【深度学习】Python实现演员-评论家算法(全源码)

目录

演员 - 评论家算法概念

演员 - 评论家算法中的关键术语

演员 - 评论家算法如何工作

演员 - 评论家算法目标函数

1. 策略梯度(行动者)

2. 价值函数更新(评论家) 

更新规则

演员更新

评论家更新 

 优势函数

Python实现

步骤1:导入库 

步骤2:创建CartPole环境

步骤3:定义演员和评论家网络

步骤4:定义优化器和损失函数

 步骤5:训练循环

演员-评论家算法的优势

演员-评论家算法的变体


演员 - 评论家算法概念

        演员 - 评论家算法(Actor - Critic Algorithm)是一种强化学习算法,它结合了两个部分,即选择行动的“演员”(Actor)和评估行动的“评论家”(Critic)。这通过平衡决策和反馈,帮助智能体更有效地学习。在演员 - 评论家方法中,演员学习如何做出决策,而评论家则检查这些决策的优劣。这种双重角色帮助智能体在探索新行动的同时,也利用已学到的知识,使学习过程更优且更平衡。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

干了这一碗BUG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值