任意多边形的面积计算(包括凹多边形的)

用这个方法吧:

我们都知道已知A(x1,y1)B(x2,y2)C(x3,y3)三点的面积公式为

|x1 x2 x3|

S(A,B,C) = |y1 y2 y3| * 0.5 (当三点为逆时针时为正,顺时针则为负的)

|1 1 1 |

对多边形A1A2A3、、、An(顺或逆时针都可以),设平面上有任意的一点P,则有:

S(A1,A2,A3,、、、,An)

= abs(S(P,A1,A2) + S(P,A2,A3)+、、、+S(P,An,A1))

P是可以取任意的一点,用(0,0)就可以了。

这种方法对凸和凹多边形都适用。

还有一个方法:

任意一个简单多边形,当它的各个顶点位于网格的结点上时,它的面积数S=b/2+c+1

其中:b代表该多边形边界上的网络结点数目

c代表该多边形内的网络结点数目

所以把整个图形以象素为单位可以把整个图形分成若干个部分,计算该图形边界上的点b和内部的点c就得到面积数S了,然后把S乘以一个象素的面积就是所求的面积了。

===============================================================================
有交叉的话,交叉点有可能不在边界上,甚至顶点也可能不在边界上。光用矢量积分的方法可能不行。我想要从顶点+交叉点集上找出外部轮廓集。  
   
  方法如下:  
  构造点集和线段集  
  1:)从第一个点开始划线,第一个点加入点集  
  2:)如果与以有的线有交点,交点加入点集;所分线段加入线段集  
  3:)划线到达终点,将线加入线段集  
  4:)如果终点不是最开始的点从1:)开始  
   
  外包轮廓序列的形成  
  1:)从点集内找纵坐标最小点A,将A加入到外包轮廓序列  
  2:)从线段集中找与A相关的线段中对X轴正方向成交最小的线段  
  3:)将线段另一个端点加入到外包轮廓序列  
  4:)如果此端点不是起始点,重复2:)  
   
  外包轮廓的分割  
  如果外包轮廓序列中有相同的点,两相同的点之间的序列可以分割出来,单独计算。  
   
  可以用出入相补原理来计算,填充成凸多边形,然后减去增加的部分

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值