d-Left Hashing

 

下面介绍简单介绍一下d-left hashingd-left hashing中的d是多个的意思,我们先简化这个问题,看一看2-left hashing2-left hashing指的是将一个哈希表分成长度相等的两半,分别叫做T1T2,给T1T2分别配备一个哈希函数,h1h2。在存储一个新的key时,同时用两个哈希函数进行计算,得出两个地址h1[key]h2[key]。这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个位置已经存储的(有碰撞的)key比较多,然后将新key存储在负载少的位置。如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key存储在左边的T1子表中,2-left也由此而来。在查找一个key时,必须进行两次hash,同时查找两个位置。

 

上面的介绍中有一点要注意,就是在作位置选择时,考虑的是两个哈希函数映射的位置中已经存储的key(包括碰撞的情况)的个数,而不是两个子表中已有key的个数。

 

了解了2-left hashingd-left hashing就很好理解,它只是对前者的扩展。2-left hashing固定了子表的个数是2d-left hashing更加灵活,子表的个数是一个变量d,同时也意味着哈希函数的个数是d。在d-left hashing中,整个哈希表被分成d个从左到右依次相邻的子表,每个子表对应一个相互独立的哈希函数。在加入新key时,这个keyd个哈希函数同时计算,产生d个相互独立的位置,然后将key加入到负载最轻的位置(bucket)中。如果负载最轻的位置有多个,就把key加入到最左边的负载最轻的子表中。同样地,如果要查找一个key,需要同时查找d个位置。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
### 回答1: 深度跨模态哈希化是一种将不同模态的数据(如图像和文本)映射到低维二进制编码的技术。这种哈希化方法可以用于跨模态检索和多模态数据分析等任务。深度跨模态哈希化通常使用深度神经网络来学习数据的表示,并使用损失函数来优化哈希函数。 ### 回答2: 深交叉模态哈希(Deep Cross-Modal Hashing)是一种用于跨模态查询的哈希方法,主要应用于大规模多媒体数据检索的场景。它可以将不同类型的信息(如图像、文本和视频)编码为紧凑的二进制哈希码,使得哈希码能够在不同模态间保持高质量的相似性。 深交叉模态哈希主要基于深度学习技术实现。通过对不同模态的数据进行编码,使得它们能够在一个统一的空间中表示,并且在该空间内距离越近的点越相似。这样,在哈希过程中,将这些点映射到二进制码空间时,距离较近的点将有更高的概率被映射到相同的哈希编码。这种方法可以提高哈希效率、压缩数据量、降低存储成本及提高检索速度。 在实践中,深交叉模态哈希被广泛应用于图像检索、视频检索和文本检索等领域。通过该方法,可以快速地检索出与查询相关的相似数据,并可以根据哈希码相似度进行排序和筛选。同时,深交叉模态哈希还可以将不同模态的数据相互转化,例如将文本转化为图像,从而在不同领域之间进行有益的交互。相信未来,随着深度学习技术的不断发展,深交叉模态哈希将会有更加广泛的应用。 ### 回答3: 深度交叉模态哈希(deep cross-modal hashing)是一种将多模态数据(如图像、文本、音频等)进行哈希编码的方法。该方法通过将多个模态数据输入到一个深度神经网络中,学习到一个交叉模态表示,然后使用该表示生成哈希编码。相比传统的单模态哈希方法,深度交叉模态哈希能够有效地利用多模态数据之间的关联,提高哈希编码的质量和准确性。 深度交叉模态哈希的具体实现方法通常分为以下几步骤: 1. 多模态数据处理 将多模态数据(如图像、文本、音频等)输入到网络中进行处理,通常使用卷积神经网络或循环神经网络来提取数据的特征。 2. 交叉模态表示学习 将多模态数据提取的特征输入到一个共享的交叉模态表示学习网络中进行训练,该网络将不同模态之间的信息进行交叉融合,并学习到一个交叉模态表示。 3. 哈希编码生成 使用学习到的交叉模态表示生成哈希编码,通常使用如余弦相似度等方法来量化哈希编码的相似度。 深度交叉模态哈希的优点在于能够有效地利用多模态数据之间的相关性,同时可以保留数据的原始特征,有利于后续的数据处理和应用。但是由于网络结构较为复杂,训练和计算成本较高,且对输入数据的质量和数量有一定要求,因此在实际应用中仍需考虑多方面因素。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jiaomeng

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值