题目描述
给你二维 面上两个由直线构成且边与坐标轴平行/垂直的矩形,请你计算并返回两个矩形覆盖的总面积。
每个矩形由其左下顶点和右上顶点坐标表示:
第一个矩形由其左下顶点 (ax1, ay1) 和右上顶点 (ax2, ay2) 定义。
第二个矩形由其左下顶点 (bx1, by1) 和右上顶点 (bx2, by2) 定义。
示例
示例 1:
输入:ax1 = -3, ay1 = 0, ax2 = 3, ay2 = 4, bx1 = 0, by1 = -1, bx2 = 9, by2 = 2
输出:45
示例 2:
输入:ax1 = -2, ay1 = -2, ax2 = 2, ay2 = 2, bx1 = -2, by1 = -2, bx2 = 2, by2 = 2
输出:16
解题过程
思路及步骤
(1)一般思路,先计算两个矩形的面积,再根据是否有重叠去判断是否需要减去重叠部分的面积;
(2)如果有重叠,则需要计算重叠部分的各个坐标。
代码展示
public class ComputeArea {
public int computeArea(int ax1, int ay1, int ax2, int ay2, int bx1, int by1, int bx2, int by2) {
int area1 = (ax2 - ax1) * (ay2 - ay1);
int area2 = (bx2 - bx1) * (by2 - by1);
if (bx1 >= ax2 || by1 >= ay2 || bx2 <= ax1 || by2 <= ay1) {
// 无重叠
return area1 + area2;
}
int ax1_ = Math.max(ax1, bx1);
int ay1_ = Math.max(ay1, by1);
int ax2_ = Math.min(ax2, bx2);
int ay2_ = Math.min(ay2, by2);
int area3 = (ax2_ - ax1_) * (ay2_ - ay1_);
return area1 + area2 - area3;
}
public static void main(String[] args) {
System.out.println(new ComputeArea().computeArea(-3,0,3,4,0,-1,9,2));
}
}