机器学习之多变量回归模型(一)

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/jiaowosiye/article/details/80783538

废话

主要是用sklearn库中的linear_model中的LinearRegression模型进行训练,另外对于训练集数据的读取用到了上一篇提到的文件读取的相关操作,这里熟悉一下https://blog.csdn.net/jiaowosiye/article/details/80782729
这段时间的学习主要侧重于掉包,希望能成为一个厉害的调包侠~~~

介绍

导入训练数据,使用skearn库中的linear_model中的LinearRefression模型进行训练,再利用该模型的predict方法对新的数据进行预测~~,另外使用.coef_ .intercept_
还可以求出该模型在训练数据上的参数

代码


#这里讲一下关于多变量回归模型的预测问题,这里涉及csv文件的读取
#以及使用sklearn库中的linear-model进行训练的

from numpy import genfromtxt
import numpy as np
import csv
datapath=r'F:\workspace_python\py_mechinelearning\20180623\delivery.csv'
data=genfromtxt(datapath,delimiter=',')
print(data)
X=data[:,:-1]
Y=data[:,-1]
print(X,Y)
LR=linear_model.LinearRegression()  #调用sklearn中的linear_model中的LinearReression模型
LR.fit(X,Y) #使用该模型进行训练X,Y 训练集上训练模型
print("该模型的系数:\n",LR.coef_)
print("该模型的截距为:\n",LR.intercept_)

X_test=[[78,3]]
print("使用训练好的模型进行预测的结果为:\n",LR.predict(X_test))

结果

图8

展开阅读全文

没有更多推荐了,返回首页