- 博客(11)
- 收藏
- 关注
原创 VS下glog的下载,使用
下载glog源码网址https://github.com/google/glog用camke生成选择原文件路径以及生成文件路径,点击configue选择vs版本,32位还是64位,等待结束后,点击generate然后openproject,编译提示如下界面即可在对应生成的debug或者release中找到对应的lib库以及对应的头文件,log_severity.h是在未camke里找到的,不添加的话会报没有这个东西的错使用glog时可以在项目“属性→C/C++→常规→..
2021-01-24 17:50:10 624
原创 MFC基于对话框项目项目中添加新对话框创建类
视图->其他窗口->资源视图右键Dialog添加新的Dialog在新创建的对话框点击右键,添加类一般类名以C开头,头文件和源文件去掉C使用类名,…可以修改创建文件的路径运行后提示无法打开pch.h头文件解决办法:1直接删除pch.h2自己创建一个pch.h头文件添加好头文件以后,出现了各种语法错误翻到最后看到了未定义CDialog,添加#include <afxwin.h>即可解决提示新建的对话框的标识符未定义,再报错的界面加上#include "resou.
2021-01-23 11:05:57 1538 1
原创 MFC去除button按钮的边框以及改变按钮颜色
MFC的button控件是一个不同于其他控件,其CButtton类是CWnd的一个子类,在修改button的背景、颜色和边框的时候必须自己进行编写一个新的类,如CMyButton。下面是进行背景、颜色、边框修改的步骤:1.在项目->添加类->CMyButton。这样会自动生成两个文件,一个.CPP文件和一个.h文件。例如CMyButton.cpp和CMyButton.h2.在你的主界面的头文件中添加对CMyButton.h的包含,即 #include “CMyButton.h”3.在对
2020-11-25 09:47:22 4181
原创 OPENCV2矩阵的掩膜操作
所谓掩膜其实就是一个矩阵,然后根据这个矩阵重新计算图片中像素的值。掩膜主要有以下用途:提取感兴趣区,用预先制作的感兴趣区掩模与待处理图像相乘,得到感兴趣区图像,感兴趣区内图像值保持不变,而区外图像值都为0。屏蔽作用,用掩模对图像上某些区域作屏蔽,使其不参加处理或不参加处理参数的计算,或仅对屏蔽区作处理或统计。结构特征提取,用相似性变量或图像匹配方法检测和提取图像中与掩模相似的结构特征。特殊形状图像的制作获取图像像素指针lMat.ptr(int i=0) 获取像素矩阵的指针,索引i表示第几行,从
2020-10-19 22:09:02 188
原创 OPENCV1加载修改保存图像
加载图像(用cv::imread)Mat imread( const String& filename, int flags = IMREAD_COLOR );limread功能是加载图像文件成为一个Mat对象,其中第一个参数表示图像文件名称l第二个参数,表示加载的图像是什么类型,支持常见的三个参数值lIMREAD_UNCHANGED (<0) 表示加载原图,不做任何改变lIMREAD_GRAYSCALE ( 0)表示把原图作为灰度图像加载进来lIMREAD_COLOR (>
2020-10-18 23:16:24 129
原创 vs2019下配置opencv4.4.0
1vs2019安装,以及opencv4.4.0安装 直接到对应官网下载即可2配置系统环境变量 我的电脑右键->左面高级系统设置->点击环境变量->系统变量框中找到path->新建-> D:\opencv\opencv\build\x64\vc15\bin->然后一路确定3用vs创建一个空项目4菜单栏 视图->其他窗口->属性资源管理器5双击项目名,进入属性配置页面双击project1进入配置页面,属性页上面的平台选择x64左侧
2020-10-16 13:32:29 1014
原创 5多分类
5多分类案例:手写数字识别数据集:ex3data1.mat(matlab的一种数据格式)导入新库来处理.mat格式文件2 加载数据集import numpy as npimport matplotlib.pyplot as pltimport scipy.io as siodata = sio.loadmat("ex3data1.mat")print(data) # 为字典格式print(data.keys())raw_X = data["X"] # (5000,4
2020-08-12 19:35:37 228
原创 4逻辑回归线性不可分
4逻辑回归线性不可分题目:设想你是工厂的生产主管,你有一些芯片在两次测试中的测试结果。对于这两次测试,你想决定是否芯片要被接受或抛弃数据集:ex2data2.txt数据可视化# 读取文件data = pd.read_csv("ex2data2.txt", sep=",", names=["test1", "test2", "accepted"])print(data.head())# 数据可视化fig, ax = plt.subplots()ax.scatter(data[data["
2020-08-10 17:07:17 1288
原创 3逻辑回归二分类
3逻辑回归二分类题目:根据学生的俩门学习成绩,预测该学生能否会被大学录取数据集:ex2data1.txt数据可视化# 读取文件data = pd.read_csv("ex2data1.txt", sep=",", names=["exam1", "exam2", "accepted"])print(data.head())# 数据可视化fig, ax = plt.subplots()ax.scatter(data[data["accepted"] == 0]["exam1"], d
2020-08-06 18:03:29 432 1
原创 2多变量线性回归
2多变量线性回归题目:假设你现在打算卖房子,想知道房子可以卖多少钱,我们拥有房子面积和卧室数量以及房子对应的 价格数据集:ex1data2.txt读取文件data = pd.read_csv("ex1data2.txt", sep=",", names=["area", "num", "price"])print(data.head())特征归一化本文采用第一种方法# 特征归一化def normalize_feature(data):
2020-08-06 11:16:59 356 1
原创 1单变量线性回归
单变量线性回归题目:假设你是一家餐馆的CEO,考虑不同的城市开设一个新的分店。该连锁店已经在各个城市拥有卡车,而且你有来自城市的利润和人口数据。数据集:ex1data1.txt数据集样例|人口(x)|利润(y) ||6.1101 |17.592 || 5.5277 |9.1302 ||… |… |共有97行数据。常用库import numpy as np # 科学计算库,处理多
2020-08-05 19:18:47 1019 4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人