TF-IDF_MapReduceJava代码实现思路

TF-IDF

1.    概念

 

2.    原理

 

3.    java代码实现思路

数据集:
 
三个MapReduce
第一个MapReduce:(利用ik分词器,将一篇博文,也就是一条记录中的content进行词的拆分)
     第一个MapReduce最终运行的结果:
                                    1. 得到数据集中微博的总数
                                    2. 得到每个词在当前所属微博的TF值 
       
    Mapper端:key:LongWritable(偏移量)   value:3823890314914825    今天天气晴好,姐妹们约起,一起去逛街。
                                  步骤一:拆分读取(按照'\t'), 得到id, content    
                                  步骤二:利用ik分词器对内容进行分词(今天,天气,姐妹),遍历分词结果,对分词结果中的每一个             词 输出(w_id, 1) 
                                  步骤三:当对内容进行遍历完成之后,记录当前这一条微博, 输出(count,1)
 
   第一个MR自定义分区:extends HashPartitioner<Text, IntWritable>,重写getPartition
                                  默认的分区规则:key.hash()%reduce的个数
                                  这里对key的值进行判断, 如果key.equals("count"),交给最后一个reduce,否则,交给reduceCount-1
                            
    Reducer端:第一种--key:w_id   value:{1,1,1}     第二种--key:count   value{1,1,1.....}
                                  步骤一:将经过shuffle过程后的数据,进行整合(key相同的值为一组,对迭代器中的值进行遍历)
                                  步骤二:将reduce后的结果进行写出,context.write(key, new IntWritable(sum))
                                                 !注意  
                                                           因为这里在FirstJob中设置了Reduce的个数 (job.setNumReduceTasks(4)), 所以最后会有                                                              四个文件输出,而key=count又指定了Reduce,所以key:count   value{1,1,1.....}在最后一个文                                                                件,key:w_id   value:{1,1,1}在前三个文件   
       
第二个MapReduce:   从第一个MapReduce输出的结果中读取,作为本次的输入
   第二个MapReduce最终运行的结果:
                                   1. 得到每一个词在数据集中多少条微博中出现过,即DF值 
 
   Mapper端:key:LongWritable(偏移量)   value:今天_3823890314914825   2
                                  步骤一:获取当前mapper task的数据片段(split), 根据FlieSplit的所属文件名进行判断,保证不是最后一个文 件( 因为最后一个文件的内容是count 1075
                                  步骤二:这时mapper端输入的value值是 今天_3823890314914825   2 
对数据处理,按照“\t”切割,再按照“_”切割,输出context.write(今天,1)// 注意这里将要统计的是包含今天的文件总数,所以不关注微博id
 
    Reducer端:key:w  value:{1,1,1}     数据样例:key=今天,value={1,1,1,1,1}  //每一个1表示数据集中有一条微博包含今天这个词
                                  步骤一:将经过shuffle过程后的数据,进行整合(key相同的值为一组,对迭代器中的值进行遍历)
                                  步骤二:将reduce后的结果进行写出,context.write(key, new IntWritable(sum))
   
    经过第二个MapReduce操作后,就获得了每一个词的df(document frequency)值   
                                        
第三个MapReduce:    目的-->计算TF*IDF值
   第三个MapReduce最终运行的结果:
                                   1. 得到每一条微博中,每个词的TF-IDF值
                                   结果样例:{3823890314914825 今天:2.78834   逛街:3.98071   姐妹:1.98712}
         技巧:
                第一个MapReduce输出的第四个文件(count  1075), 计算每一个单词的TF-IDF值都需要用到,所以将这个文件在job运   时加载到内存中以提高运行效率
                第二个MapReduce输出的文件--> 每一个单词在数据集中多少条微博出现过,即df值(今天  5), 因为它里面包括常用的词   汇,不同于数据集,并不是很大也可以加载到内存,提高程序的执行效率
    1. // 把微博总数加载到内存
  1. job.addCacheFile(newPath("/user/tfidf/output/weibo1/part-r-00003")
  2. .toUri());
  3. // 把df加载到内存
  4. job.addCacheFile(newPath("/user/tfidf/output/weibo2/part-r-00000")
  5. .toUri());
 
   Mapper端:key:LongWritable(偏移量)   value:今天_3823890314914825   2
                                  步骤一:在正式执行map方法之前 先执行setup(Context context)方法
                                                  目的:将加载到内存中的微博总数,以及DF值,封装到Map对象中(cmap,df),便于map的操作
                                  步骤二:开始执行map操作,因为mapper端的输入是第一次MapReduce的输出,所以还需要进行判断,是否   是最后一个文件(count,1075)
                                                 对数据处理,按照“\t”切割, 得到tf值-->v[1]=2,同时将v[0]按照“_”切割,得到单词(今  天)和微博id( 3823890314914825)
                                                  从cmap中获取“count”,从df中获取该单词的df值,在根据该单词的tf值,计算该单词的TF*IDF值
                                                      double s = tf * Math.log(cmap.get("count") / df.get(w));
                                   步骤三: 将数据输出,key=微博的id,value=(w:tf*idf值)
 
    Reducer端:key=微博的id, value=(w:tf*idf值)    
                        数据样例:key=3823890314914825,value={今天:2.89101, 逛街:3.08092}
 
                                   步骤一:将经过shuffle过程后的数据,进行整合(key相同的值为一组,对迭代器中的值进行遍历,定义StringBuffer, 对迭代器中每一个单词以及对应的TF*IDF值拼接
                                   步骤二:将reduce后的结果进行写出, context.write(key, new Text(sb.toString()))
 

4.    商家如何做到精准营销?

    经过以上过程,我们拿到的最终数据是3823890314914825  {今天:2.89101, 逛街:3.08092}, 即每一条微博中每个词的TF*IDF值
    比如韩国料理要推送大骨汤,这时候只需要 对数据集中的每一条微博中的每一个词对应的TFIDF值做一个降序,然后取前3位,
对整个数据集中的数据遍历, 凡是TF*IDF值前三位包含大骨汤的,就是商家要推送的对象
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值