深度解析Google的AudioPaLM:复现高级语音对话技术的完整指南
故事开篇:追寻高级语音对话技术的梦想,实现真正的『Her』
作为一名热衷于人工智能和自然语言处理的技术研究人员,我一直梦想着复现一个类似于ChatGPT-4高级语音模式的语音对话系统。这样的系统不仅能理解和生成文本,还能流畅地进行语音对话,实现“能说会听”的智能交互体验。为了实现这个目标,我开始广泛阅读相关领域的最新研究论文,寻找灵感和方法。
在众多论文中,Google发布的AudioPaLM: 一个可以说话和聆听的大型语言模型引起了我的极大兴趣。AudioPaLM将文本和语音的处理能力融合在一个统一的多模态架构中,不仅继承了文本大型语言模型(如PaLM-2)的语言知识,还具备了语音模型(如AudioLM)的语音理解和生成能力。本博客将详细讲解AudioPaLM的核心思想、方法和实验结果,并提供复现代码示例,帮助有志于复现高级语音对话技术的开发者深入理解和应用这一前沿研究成果。我也会通过近期的一些论文理解着手开始我的高级语音功能开源项目的实现。
目录
引言
大型语言模型(LLMs)如GPT-4在文本生成和理解方面展现出了卓越的能力。然而,要实现一个既能理解语音又能生成语音的高级对话系统,还需要融合文本和语音的多模态能力。AudioPaLM正是Google在这一领域的突破性工作,通过将文本和音频的处理能力整合在一个统一的Transformer解码器中,实现了语音识别、语音翻译和语音生成等多项任务。
AudioPaLM的核心优势在于:
- 多模态统一架构:将文本和音频标记整合到一个联合词汇表中,使用单一的Transformer解码器进行建模。
- 预训练知识迁移:利用预训练的PaLM-2模型的语言知识,提升语音任务的表现。
- 高效的音频生成:通过SoundStream等神经编解码器,实现高保真的音频生成,保留说话人的音色和韵律。
- 零样本翻译能力:在训练中未见过的语言对上,模型仍能实现有效的语音到文本翻译。
接下来的章节将详细解读AudioPaLM的相关工作、模型结构、训练方法及其实验结果,并提供尝试复现代码的示例。
相关工作
多模态融合
多模态融合旨在通过联合建模不同模态(如文本、图像、音频)的数据,提升模型在跨模态任务中的表现。常见的方法包括:
- 基于编码器的模型:分别使用不同的编码器处理各模态输入,然后在下游任务中融合特征。例如,BERT在文本中的应用。
- 对比学习:通过对比损失,使不同模态的编码器输出在特征空间中对齐,如CLIP在图像和文本对齐中的应用。
- 编码器-解码器架构:使用统一的解码器处理不同模态的编码器输出,如Flamingo和Whisper。
AudioPaLM采用了一种创新的方法,将文本和音频标记合并到一个统一的词汇表中,使用单一的Transformer解码器进行自回归建模,实现了多模态融合。
用语言模型生成音频
近年来,研究者们探索使用自回归Transformer模型生成音频,主要方法包括:
- 离散化表示:将连续音频信号转换为离散标记序列,类似于文本的token。例如,使用HuBERT或w2v-BERT提取“语义标记”。
- 分层生成:先生成高层次的语义标记,再生成低层次的声学标记,如AudioLM的分层方法。
AudioPaLM基于AudioLM的方法,结合了文本预训练语言模型的优势,实现了更强的多模态生成能力。
语音到语音翻译
语音到语音翻译(S2ST)旨在直接将一种语言的语音转换为另一种语言的语音,避免传统级联方法中多次转换可能带来的误差。主要方法包括:
- 端到端训练:直接在音频频谱图域中训练模型,实现从源语音到目标语音的直接转换。
- 离散语音表示:使用学习到的离散表示作为中间步骤,简化翻译过程。
AudioPaLM通过统一的多模态模型,在ASR、AST(语音到文本翻译)、TTS(文本到语音)和S2ST等多项任务上实现了高效且高质量的翻译与生成。
AudioPaLM模型详解
模型架构概述
AudioPaLM基于仅解码器的Transformer架构(类似于GPT系列),通过将文本和音频标记整合到一个联合词汇表中,实现多模态建模。其主要步骤如下:
- 音频标记化:将原始音频信号转换为离散音频标记序列。
- 词汇表扩展:将文本和音频的词汇表合并,形成一个统一的多模态词汇表。
- 模型初始化:使用预训练的PaLM-2模型权重初始化Transformer解码器,并随机初始化新增的音频嵌入。
- 多任务训练:在ASR、AST、TTS和S2ST等任务上进行混合训练,优化模型在多模态任务上的表现。
- 音频解码:将生成的音频标记序列转换回原始音频波形。
以下为AudioPaLM的整体架构流程图:
音频处理流程:
- 音频输入
- 音频编码器(USM/w2v-BERT)
- 离散化(k-means聚类)
- 音频标记序列
- AudioPaLM Transformer 解码器
- 生成音频标记
- SoundStream 解码器
- 生成音频波形
- SoundStream 解码器
- 生成音频标记
- AudioPaLM Transformer 解码器
- 音频标记序列
- 离散化(k-means聚类)
- 音频编码器(USM/w2v-BERT)
训练过程:
- 离散化(k-means聚类)
- 混合任务训练
- AudioPaLM Transformer 解码器
- 混合任务训练
音频嵌入与标记化
音频嵌入与标记化是AudioPaLM处理音频数据的关键步骤。具体流程如下:
-
音频预处理:
- 使用预训练的语音编码器(如w2v-BERT或USM)从原始音频波形中提取连续的语音特征嵌入。
-
离散化:
-
通过k-means聚类将连续的嵌入向量转换为离散的音频标记。具体步骤如下:
tokens = k-means ( embedding ) \text{tokens} = \text{k-means}(\text{embedding}) tokens=k-means(embedding) -
例如,使用1024个聚类中心,将音频序列以25Hz的帧率转换为离散标记序列。
-
标记化方法的选择:
- w2v-BERT:使用多语言训练的w2v-BERT模型提取嵌入,未进行归一化,生成1024个音频标记。
- USM-v1:使用更强大的USM编码器,生成相同的音频标记集。
- USM-v2:在USM-v1基础上,加入辅助ASR损失进行进一步微调,提升多语言性能。
修改文本解码器以建模文本和音频
为了使预训练的文本解码器能够处理音频标记,AudioPaLM对解码器的嵌入矩阵进行了扩展:
-
扩展嵌入矩阵:
- 原始文本词汇表大小为( T ),音频标记集大小为( A )。
- 将嵌入矩阵的大小从 ( T \times d ) 扩展为 ( (T + A) \times d ),其中( d )为嵌入维度。
E ∈ R ( T + A ) × d \mathbf{E} \in \mathbb{R}^{(T+A) \times d} E∈R(T+A)×d
-
初始化新增音频嵌入:
- 保留预训练模型的文本嵌入矩阵,新增的音频嵌入初始化为随机值。
-
共享权重:
- 输入和输出嵌入矩阵共享权重,即
E
′
=
E
T
\mathbf{E}' = \mathbf{E}^T
E′=ET
。
- 输入和输出嵌入矩阵共享权重,即
E
′
=
E
T
\mathbf{E}' = \mathbf{E}^T
E′=ET
公式表示:
E
′
=
E
T
\mathbf{E}' = \mathbf{E}^T
E′=ET
这种设计允许模型在处理文本和音频时共享表示,同时通过微调适应多模态输入。
从音频标记解码到原始音频
AudioPaLM使用两种方法将生成的音频标记转换回原始音频波形:
-
自回归解码(AudioLM方法):
- 阶段2:使用仅解码器的Transformer模型,以AudioPaLM生成的音频标记和语音条件作为输入,生成SoundStream标记。
- 阶段3:通过SoundStream解码器将SoundStream标记转换为高保真的音频波形。
-
非自回归解码(SoundStorm方法):
- 使用SoundStorm模型并行生成标记,提高生成速度和一致性。
- SoundStorm生成与AudioLM相同质量的音频,但速度提升两个数量级。
流程图:
训练任务
AudioPaLM在多种任务上进行训练,包括:
- ASR(自动语音识别):将音频转录为文本。
- AST(自动语音翻译):将音频翻译为目标语言的文本。
- S2ST(语音到语音翻译):将一种语言的音频翻译为另一种语言的音频。
- TTS(文本到语音):将文本合成为音频。
- MT(机器翻译):将文本翻译为目标语言的文本。
任务表达方式:
通过在输入序列前添加任务和语言标签,指导模型执行相应任务,如:
[ASR French]
表示对法语音频进行ASR。[S2ST English French]
表示将英语音频翻译为法语音频。
公式表示:
Input
=
[Task Language]
+
Input Tokens
\text{Input} = \text{[Task Language]} + \text{Input Tokens}
Input=[Task Language]+Input Tokens
训练混合与设置
AudioPaLM在包含多种任务的数据混合上进行训练,具体包括:
- AST混合:结合ASR、AST和MT任务的数据集,如CoVoST2、VoxPopuli等。
- S2ST混合:在AST混合基础上,增加S2ST和TTS任务的数据集。
训练细节:
- 优化器:使用Adafactor优化器。
- 学习率: 5 × 1 0 − 5 5 \times 10^{-5} 5×10−5
- Dropout率:0.1。
- 损失掩码:在输入上应用损失掩码,以避免模型过度依赖输入音频标记。
公式表示:
L
=
−
∑
t
=
1
N
log
p
(
x
t
∣
x
<
t
;
Θ
)
\mathcal{L} = -\sum_{t=1}^N \log p(x_t \mid x_{<t}; \Theta)
L=−t=1∑Nlogp(xt∣x<t;Θ)
实验与结果
语音翻译和识别结果
在多个基准数据集上,AudioPaLM在语音到文本翻译(AST)和语音到语音翻译(S2ST)任务上均超越了现有的最佳系统,而在自动语音识别(ASR)任务上也展现出了竞争力。具体结果如下:
- AST:相比现有基线,AudioPaLM在自动语音翻译任务上显著提升了BLEU分数。
- S2ST:在语音到语音翻译任务上,AudioPaLM超越了传统级联方法和现有直接翻译模型。
- ASR:在自动语音识别任务上,AudioPaLM的性能接近甚至超过了一些现有系统。
表1:语音翻译和识别结果
模型 | AST (BLEU) | S2ST (BLEU) | ASR (WER/CER) |
---|---|---|---|
Whisper Large | 25.3 | - | 8.5/5.2 |
Translatotron 2 | 28.7 | 24.1 | 7.9/4.8 |
AudioPaLM | 32.1 | 27.5 | 7.5/4.5 |
注:表中数值为假设示例,实际结果请参考论文。
零样本行为
AudioPaLM展示了强大的零样本能力,能够在训练中未见过的语言对上执行AST任务。例如,在FLEURS数据集的测试中,AudioPaLM-2在未见过的语言对上仍能实现优异的翻译效果,BLEU分数显著高于基线模型。
表2:零样本AST能力
模型 | 观察语言AST (BLEU) | 仅观察ASR语言AST (BLEU) |
---|---|---|
Whisper Large | 30.2 | 25.4 |
AudioPaLM-2 | 35.6 | 28.9 |
注:表中数值为假设示例,实际结果请参考论文。
生成语音的质量
通过客观指标(如无参考MOS估计)和主观评估(人类评分),AudioPaLM生成的语音在质量和声音相似度上均优于基线系统Translatotron 2,甚至在某些指标上超过了真实合成录音。
表3:语音生成质量评估
模型 | MOS | SMOS |
---|---|---|
Translatotron 2 | 3.8 | 3.5 |
AudioPaLM | 4.2 | 4.0 |
真实录音 | 4.5 | 4.3 |
注:表中数值为假设示例,实际结果请参考论文。
模型和数据选择的影响
通过多项消融实验,研究了模型规模、标记化方案、训练任务组合等因素对性能的影响:
- 多任务训练:同时训练ASR和AST任务提升了AST性能。
- 预训练微调:从预训练的PaLM-2模型微调,显著优于从头训练。
- 标记化方案:使用更强大的USM标记器(尤其是USM-v2)显著提升了模型性能。
- 组合任务:将复杂任务分解为组合任务(如先ASR后AST)进一步提升了AST性能。
- 数据规模:增加训练数据量显著提高了模型在各任务上的表现。
- 解码方法:采用非自回归的SoundStorm解码器相比AudioLM,提升了S2ST任务的BLEU分数。
- 模型规模:增大模型规模(从128M到8B)显著提升了ASR和AST任务的性能。
表4:模型和数据选择的影响
实验设置 | AST (BLEU) | S2ST (BLEU) | ASR (WER/CER) |
---|---|---|---|
仅AST任务 | 16.0 | 20.0 | 10.0/7.0 |
AST + ASR任务 | 18.5 | 22.5 | 9.0/6.5 |
AST + ASR + 组合任务 | 20.0 | 24.0 | 8.5/6.0 |
使用USM-v2标记器 | 25.0 | 27.0 | 7.5/5.0 |
扩大训练数据量 | 32.1 | 27.5 | 7.5/4.5 |
使用SoundStorm解码器 | 32.1 | 28.8 | 7.5/4.5 |
增大模型规模至8B | 35.0 | 30.0 | 7.0/4.0 |
注:表中数值为假设示例,实际结果请参考论文。
复现指南
为了帮助有志于复现AudioPaLM的开发者,以下提供了详细的复现步骤和代码示例。需要注意的是,AudioPaLM模型庞大,复现需要充足的计算资源和时间。
环境配置
首先,确保你的环境中安装了必要的库和依赖项。推荐使用Python 3.8及以上版本,并配置GPU支持。
# 创建虚拟环境
python3 -m venv audiopalm_env
source audiopalm_env/bin/activate
# 更新pip
pip install --upgrade pip
# 安装必要的库
pip install torch torchvision torchaudio
pip install transformers
pip install sentencepiece
pip install soundfile
pip install numpy
pip install scikit-learn
pip install matplotlib
pip install seaborn
pip install datasets
数据准备
AudioPaLM使用多种公开数据集进行训练,包括CoVoST2、VoxPopuli、Common Voice等。以下以CoVoST2为例,说明数据的下载和预处理。
import os
import soundfile as sf
from datasets import load_dataset
# 下载CoVoST2数据集
dataset = load_dataset("facebook/covert2", "en-fr")
# 示例:加载音频和转录
audio_path = dataset["train"][0]["audio"]["path"]
transcript = dataset["train"][0]["translation"]["fr"]
# 读取音频
audio, samplerate = sf.read(audio_path)
print("Transcript:", transcript)
print("Audio shape:", audio.shape)
模型训练
以下是基于Hugging Face Transformers库的简化训练示例,展示如何加载预训练的PaLM模型,扩展词汇表,并进行微调。
import random
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
from sklearn.cluster import KMeans
import numpy as np
# 1. 加载预训练的PaLM模型和分词器
tokenizer = AutoTokenizer.from_pretrained("google/palm-2-8b")
model = AutoModelForCausalLM.from_pretrained("google/palm-2-8b")
# 2. 扩展词汇表以包含音频标记
audio_vocab_size = 1024 # 假设音频标记集大小为1024
original_vocab_size = tokenizer.vocab_size
new_vocab_size = original_vocab_size + audio_vocab_size
model.resize_token_embeddings(new_vocab_size)
# 3. 初始化新增的音频嵌入
with torch.no_grad():
model.get_input_embeddings().weight[original_vocab_size:] = torch.randn(audio_vocab_size, model.config.n_embd)
# 4. 准备训练数据
# 这里假设已经将音频转换为音频标记,并与文本标记结合
def encode_example(text, audio_tokens):
task_label = "[AST English French]"
input_text = f"{task_label} {text}"
input_tokens = tokenizer.encode(input_text, return_tensors='pt')
audio_tensor = torch.tensor(audio_tokens).unsqueeze(0) # [1, seq_len]
return torch.cat([input_tokens, audio_tensor], dim=1)
# 示例数据
train_text = "Hello, how are you?"
# 伪音频标记,实际应用中需使用USM或w2v-BERT生成
train_audio_tokens = [random.randint(0, audio_vocab_size-1) for _ in range(100)]
input_ids = encode_example(train_text, train_audio_tokens)
# 创建训练数据集
class AudioPaLMDataset(torch.utils.data.Dataset):
def __init__(self, texts, audio_tokens_list, tokenizer):
self.texts = texts
self.audio_tokens_list = audio_tokens_list
self.tokenizer = tokenizer
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
text = self.texts[idx]
audio_tokens = self.audio_tokens_list[idx]
input_ids = encode_example(text, audio_tokens)
labels = input_ids.clone()
return {"input_ids": input_ids.squeeze(), "labels": labels.squeeze()}
# 示例数据集
texts = ["Hello, how are you?", "Good morning!"]
audio_tokens_list = [
[random.randint(0, audio_vocab_size-1) for _ in range(100)],
[random.randint(0, audio_vocab_size-1) for _ in range(120)]
]
train_dataset = AudioPaLMDataset(texts, audio_tokens_list, tokenizer)
# 定义训练参数
training_args = TrainingArguments(
output_dir="./audiopalm",
num_train_epochs=3,
per_device_train_batch_size=1,
save_steps=10,
save_total_limit=2,
logging_steps=5,
learning_rate=5e-5,
weight_decay=0.01,
)
# 创建Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
tokenizer=tokenizer,
)
# 开始训练
trainer.train()
注意:上述代码为简化示例,实际训练需要处理更大规模的数据集,并进行更复杂的数据预处理和训练策略调整。
模型评估
训练完成后,可以使用训练好的模型进行推理,并评估其在不同任务上的表现。
# 示例推理:ASR任务
model.eval()
# 输入法语音频标记
test_audio_tokens = [random.randint(0, audio_vocab_size-1) for _ in range(100)]
input_ids = torch.tensor([original_vocab_size + token for token in test_audio_tokens]).unsqueeze(0) # [1, seq_len]
# 生成文本
with torch.no_grad():
output_ids = model.generate(input_ids, max_length=50)
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print("Generated Transcript:", output_text)
生成音频
AudioPaLM生成的音频标记需要通过SoundStream解码器转换回原始音频波形。以下是一个简化的示例:
# 假设已经训练好SoundStream解码器,并加载其模型
from soundstream import SoundStreamDecoder # 假设存在此库
decoder = SoundStreamDecoder.from_pretrained("path/to/soundstream")
# 输入音频标记
generated_audio_tokens = output_ids[0].tolist()
# 解码为音频波形
waveform = decoder.decode(generated_audio_tokens)
# 保存音频
import soundfile as sf
sf.write("output.wav", waveform, samplerate=16000)
注意:SoundStream解码器的实现细节超出本文范围,具体实现请参考相关论文和开源项目。
实验与结果
语音翻译和识别结果
在多个基准数据集上,AudioPaLM在语音到文本翻译(AST)和语音到语音翻译(S2ST)任务上均超越了现有的最佳系统,而在自动语音识别(ASR)任务上也展现出了竞争力。具体结果如下:
表1:语音翻译和识别结果
模型 | AST (BLEU) | S2ST (BLEU) | ASR (WER/CER) |
---|---|---|---|
Whisper Large-v2 | 25.3 | - | 8.5/5.2 |
Translatotron 2 | 28.7 | 24.1 | 7.9/4.8 |
AudioPaLM | 32.1 | 27.5 | 7.5/4.5 |
注:表中数值为假设示例,实际结果请参考论文。
零样本行为
AudioPaLM展示了强大的零样本能力,能够在训练中未见过的语言对上执行AST任务。例如,在FLEURS数据集的测试中,AudioPaLM-2在未见过的语言对上仍能实现优异的翻译效果,BLEU分数显著高于基线模型。
表2:零样本AST能力
模型 | 观察语言AST (BLEU) | 仅观察ASR语言AST (BLEU) |
---|---|---|
Whisper Large-v2 | 30.2 | 25.4 |
AudioPaLM-2 | 35.6 | 28.9 |
注:表中数值为假设示例,实际结果请参考论文。
生成语音的质量
通过客观指标(如无参考MOS估计)和主观评估(人类评分),AudioPaLM生成的语音在质量和声音相似度上均优于基线系统Translatotron 2,甚至在某些指标上超过了真实合成录音。
表3:语音生成质量评估
模型 | MOS | SMOS |
---|---|---|
Translatotron 2 | 3.8 | 3.5 |
AudioPaLM | 4.2 | 4.0 |
真实录音 | 4.5 | 4.3 |
注:表中数值为假设示例,实际结果请参考论文。
模型和数据选择的影响
通过多项消融实验,研究了模型规模、标记化方案、训练任务组合等因素对性能的影响:
- 多任务训练:同时训练ASR和AST任务提升了AST性能。
- 预训练微调:从预训练的PaLM-2模型微调,显著优于从头训练。
- 标记化方案:使用更强大的USM标记器(尤其是USM-v2)显著提升了模型性能。
- 组合任务:将复杂任务分解为组合任务(如先ASR后AST)进一步提升了AST性能。
- 数据规模:增加训练数据量显著提高了模型在各任务上的表现。
- 解码方法:采用非自回归的SoundStorm解码器相比AudioLM,提升了S2ST任务的BLEU分数。
- 模型规模:增大模型规模(从128M到8B)显著提升了ASR和AST任务的性能。
表4:模型和数据选择的影响
实验设置 | AST (BLEU) | S2ST (BLEU) | ASR (WER/CER) |
---|---|---|---|
仅AST任务 | 16.0 | 20.0 | 10.0/7.0 |
AST + ASR任务 | 18.5 | 22.5 | 9.0/6.5 |
AST + ASR + 组合任务 | 20.0 | 24.0 | 8.5/6.0 |
使用USM-v2标记器 | 25.0 | 27.0 | 7.5/5.0 |
扩大训练数据量 | 32.1 | 27.5 | 7.5/4.5 |
使用SoundStorm解码器 | 32.1 | 28.8 | 7.5/4.5 |
增大模型规模至8B | 35.0 | 30.0 | 7.0/4.0 |
注:表中数值为假设示例,实际结果请参考论文。
复现指南
为了帮助有志于复现AudioPaLM的开发者,以下提供了详细的复现步骤和代码示例。需要注意的是,AudioPaLM模型庞大,复现需要充足的计算资源和时间。
环境配置
首先,确保你的环境中安装了必要的库和依赖项。推荐使用Python 3.8及以上版本,并配置GPU支持。
# 创建虚拟环境
python3 -m venv audiopalm_env
source audiopalm_env/bin/activate
# 更新pip
pip install --upgrade pip
# 安装必要的库
pip install torch torchvision torchaudio
pip install transformers
pip install sentencepiece
pip install soundfile
pip install numpy
pip install scikit-learn
pip install matplotlib
pip install seaborn
pip install datasets
数据准备
AudioPaLM使用多种公开数据集进行训练,包括CoVoST2、VoxPopuli、Common Voice等。以下以CoVoST2为例,说明数据的下载和预处理。
import os
import soundfile as sf
from datasets import load_dataset
# 下载CoVoST2数据集
dataset = load_dataset("facebook/covert2", "en-fr")
# 示例:加载音频和转录
audio_path = dataset["train"][0]["audio"]["path"]
transcript = dataset["train"][0]["translation"]["fr"]
# 读取音频
audio, samplerate = sf.read(audio_path)
print("Transcript:", transcript)
print("Audio shape:", audio.shape)
模型训练
以下是基于Hugging Face Transformers库的简化训练示例,展示如何加载预训练的PaLM模型,扩展词汇表,并进行微调。
import random
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
from sklearn.cluster import KMeans
import numpy as np
# 1. 加载预训练的PaLM模型和分词器
tokenizer = AutoTokenizer.from_pretrained("google/palm-2-8b")
model = AutoModelForCausalLM.from_pretrained("google/palm-2-8b")
# 2. 扩展词汇表以包含音频标记
audio_vocab_size = 1024 # 假设音频标记集大小为1024
original_vocab_size = tokenizer.vocab_size
new_vocab_size = original_vocab_size + audio_vocab_size
model.resize_token_embeddings(new_vocab_size)
# 3. 初始化新增的音频嵌入
with torch.no_grad():
model.get_input_embeddings().weight[original_vocab_size:] = torch.randn(audio_vocab_size, model.config.n_embd)
# 4. 准备训练数据
# 这里假设已经将音频转换为音频标记,并与文本标记结合
def encode_example(text, audio_tokens):
task_label = "[AST English French]"
input_text = f"{task_label} {text}"
input_tokens = tokenizer.encode(input_text, return_tensors='pt')
audio_tensor = torch.tensor(audio_tokens).unsqueeze(0) # [1, seq_len]
return torch.cat([input_tokens, audio_tensor], dim=1)
# 示例数据
train_text = "Hello, how are you?"
# 伪音频标记,实际应用中需使用USM或w2v-BERT生成
train_audio_tokens = [random.randint(0, audio_vocab_size-1) for _ in range(100)]
input_ids = encode_example(train_text, train_audio_tokens)
# 创建训练数据集
class AudioPaLMDataset(torch.utils.data.Dataset):
def __init__(self, texts, audio_tokens_list, tokenizer):
self.texts = texts
self.audio_tokens_list = audio_tokens_list
self.tokenizer = tokenizer
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
text = self.texts[idx]
audio_tokens = self.audio_tokens_list[idx]
input_ids = encode_example(text, audio_tokens)
labels = input_ids.clone()
return {"input_ids": input_ids.squeeze(), "labels": labels.squeeze()}
# 示例数据集
texts = ["Hello, how are you?", "Good morning!"]
audio_tokens_list = [
[random.randint(0, audio_vocab_size-1) for _ in range(100)],
[random.randint(0, audio_vocab_size-1) for _ in range(120)]
]
train_dataset = AudioPaLMDataset(texts, audio_tokens_list, tokenizer)
# 定义训练参数
training_args = TrainingArguments(
output_dir="./audiopalm",
num_train_epochs=3,
per_device_train_batch_size=1,
save_steps=10,
save_total_limit=2,
logging_steps=5,
learning_rate=5e-5,
weight_decay=0.01,
)
# 创建Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
tokenizer=tokenizer,
)
# 开始训练
trainer.train()
注意:上述代码为简化示例,实际训练需要处理更大规模的数据集,并进行更复杂的数据预处理和训练策略调整。
模型评估
训练完成后,可以使用训练好的模型进行推理,并评估其在不同任务上的表现。
# 示例推理:ASR任务
model.eval()
# 输入法语音频标记
test_audio_tokens = [random.randint(0, audio_vocab_size-1) for _ in range(100)]
input_ids = torch.tensor([original_vocab_size + token for token in test_audio_tokens]).unsqueeze(0) # [1, seq_len]
# 生成文本
with torch.no_grad():
output_ids = model.generate(input_ids, max_length=50)
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print("Generated Transcript:", output_text)
生成音频
AudioPaLM生成的音频标记需要通过SoundStream解码器转换回原始音频波形。以下是一个简化的示例:
# 假设已经训练好SoundStream解码器,并加载其模型
from soundstream import SoundStreamDecoder # 假设存在此库
decoder = SoundStreamDecoder.from_pretrained("path/to/soundstream")
# 输入音频标记
generated_audio_tokens = output_ids[0].tolist()
# 解码为音频波形
waveform = decoder.decode(generated_audio_tokens)
# 保存音频
import soundfile as sf
sf.write("output.wav", waveform, samplerate=16000)
注意:SoundStream解码器的实现细节超出本文范围,具体实现请参考相关论文和开源项目。
展望
AudioPaLM展现了一个全新的多模态大模型范式:将文本和音频标记合并在一个统一的词汇表中,利用预训练的PaLM-2模型的语言知识,通过微调实现了多模态任务的高效学习。其在自动语音翻译(AST)和语音到语音翻译(S2ST)任务上取得了突破性的表现,同时在自动语音识别(ASR)任务上也展现出了竞争力。
对于渴望复现类似ChatGPT-4高级语音模式的开发者来说,AudioPaLM提供了一个清晰而详细的实现思路。未来的研究方向可以包括:
- 更强的标记化方案:探索自适应聚类、可学习量化等方法,提升音频标记的质量和可扩展性。
- 端到端训练:在音频标记化和模型微调之间建立更紧密的联系,减少误差传播。
- 扩展更多模态:将视觉信息等其他模态融入模型,打造真正的多模态智能系统。
- 优化生成速度:采用更高效的解码方法,如SoundStorm,提高实时语音生成的能力。
通过不断优化和扩展,未来的多模态语言模型将能够实现更加自然、流畅和高效的人机交互,为智能对话系统的发展带来新的可能,我大胆预测5年时间就会有很接近Her的人工智能助手出现,期待那天的到来。
参考文献
- Anil, R., et al. (2023). PaLM-2: Pathways Language Model.
- Borsos, A., et al. (2022). AudioPaLM: a Language Modeling Approach to Audio.
- Borsos, A., et al. (2023). SoundStorm: Efficient Non-Autoregressive Audio Generation.
- Chowdhery, A., et al. (2022). PaLM: Scaling Language Modeling with Pathways.
- Chung, J., et al. (2021). w2v-BERT: Combining Self-Supervised Learning with BERT.
- Jia, R., et al. (2022). Translatotron 2: High-Quality and Consistency Speech-to-Speech Translation.
- Kharitonov, Y., et al. (2023). SPEAR-TTS: Speech Processing with Encoder-Decoder Models.
- Zhang, Y., et al. (2023a). USM: Universal Speech Model.
- Borsos, A., et al. (2022). AudioLM: Language Modeling for Audio.
- Kudo, T., & Richardson, J. (2018). SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing.
更多示例与音频样本:可查看作者提供的演示页面
https://google-research.github.io/seanet/audiopalm/examples