
遗传算法与深度学习实战
文章平均质量分 97
原价99.9,限时29.9🔥火爆订阅中(五日后恢复原价)。在本专栏中,介绍了一系列进化算法技术以及如何应用于深度学习。专注于可应用于各种问题的实用技术,关注各种形式的自动机器学习如何应用于优化深度学习系统并评估其性能。
优惠券已抵扣
余额抵扣
还需支付
¥29.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
盼小辉丶
记录学习历程,分享学习心得,关注深度学习,欢迎交流学习.
展开
-
进化深度学习 (Evolutionary Deep Learning, EDL)
进化深度学习 (Evolutionary Deep Learning, EDL) 是一套可以用于自动化深度学习系统开发的工具和实践,EDL 包括了广泛的进化计算方法和模式,可以应用于深度学习系统流程的各个方面。本节中,介绍了深度学习面临的挑战,以及进化深度学习在应对这些挑战方面的技术方法。原创 2024-07-25 11:20:24 · 33128 阅读 · 92 评论 -
Python 实现生命游戏及进化模拟完整指南
生命模拟是进化计算的一个特定子集,模拟了自然界中所观察到的自然过程,例如粒子或鸟群的聚集方式。生命模拟只是用来探索和优化问题的模拟形式之一,还有很多其他形式的模拟,可以更好地建模各种过程,但它们都源于康威生命游戏 (Conway’s Game of Life)。在本节中,我们将介绍生命模拟的基本概念,并使用 Python 实现康威生命游戏。原创 2024-08-01 08:16:45 · 30494 阅读 · 48 评论 -
从进化论到代码实现:构建可进化的生命模拟系统
生命模拟利用计算机模拟来模拟生命体的行为、生长和进化过程。这些模拟可以基于简单的规则和算法,通过模拟生物个体的互动和繁殖,探索复杂系统如何从简单规则中产生出自组织和复杂性。在本节中,通过借鉴达尔文的进化论,构建了升级版的生命模拟。原创 2024-08-06 09:42:06 · 30890 阅读 · 0 评论 -
遗传算法(Genetic Algorithm)详解与实现
遗传算法(Genetic Algorithm, GA)是受自然进化原理启发的一系列搜索算法。通过模仿自然选择和繁殖的过程,遗传算法可以为涉及搜索、优化和学习的各种问题提供高质量的解决方案。同时,它们类似于自然进化,因此遗传算法可以克服传统搜索和优化算法遇到的一些障碍,尤其是对于具有大量参数和复杂数学表示形式的问题。原创 2020-12-25 18:45:06 · 207745 阅读 · 25 评论 -
遗传算法核心算子全解析:原理比较与性能评估
遗传算子的选择需要考虑特定的基因或个体类型;当然,我们也可以根据具体问题自定义合适的遗传算子。将正确的遗传算子应用于具体问题需要了解不同遗传算子的功能和原理。在本节中,我们将介绍一些常见的遗传算子。原创 2024-09-09 08:57:43 · 2468 阅读 · 62 评论 -
Python DEAP 库深度解析:从基础架构到高级应用
DEAP 是一个基于 Python 的开源框架,专门用于实现和运行各种进化算法,旨在帮助用户轻松地构建和调整进化算法,用于解决各种优化和搜索问题。本节中,介绍了 DEAP 相较于其它进化计算框架的优势,以及 DEAP 中重要的工具 creator 和 Toolbox。原创 2024-08-15 08:28:35 · 2282 阅读 · 0 评论 -
使用 DEAP 库实现遗传算法解决 OneMax 问题
OneMax 问题是遗传算法和进化计算领域中的一个简单但经典的问题,常用于展示如何应用进化算法进行优化任务。在本节中,我们介绍了 DEAP 框架下遗传算法构建的通用流程,并使用 DEAP 解决简单的 OneMax 问题。原创 2024-08-19 08:58:34 · 1670 阅读 · 58 评论 -
使用 DEAP 库实现遗传算法解决 N 皇后问题
N 皇后问题是一个经典的组合问题,要求在一个( N x N )的棋盘上放置 N 个皇后,使得它们互相不能攻击到对方。遗传算法是解决 N 皇后问题的一种有效方法,本节中,我们使用 DEAP 库实现遗传算法解决了 N 皇后问题。原创 2024-08-21 08:06:56 · 2293 阅读 · 84 评论 -
使用 DEAP 库实现遗传算法解决旅行商问题
使用遗传算法 (Genetic Algorithm, GA) 解决旅行商问题 (Traveling Salesman Problem, TSP) 是一种常见且有效的方法。遗传算法模拟了生物进化的过程,通过交叉、变异和选择等操作来逐步优化问题的解。遗传算法作为一种启发式算法,虽然不能保证找到全局最优解,但通常能在合理时间内找到很好的近似解,尤其适合解决大规模的 TSP 问题。原创 2024-08-28 09:04:48 · 1785 阅读 · 65 评论 -
遗传算法重建图像:基于 DEAP 的 EvoLisa 项目复现
EvoLisa 是一个经典的遗传算法应用案例,展示了如何利用计算机算法来模仿艺术家的创作风格,尤其是在复杂的艺术形式中,如绘画和图像生成。本节中,我们使用 DEAP 通过复现 EvoLisa 项目重建《蒙娜丽莎》图像。原创 2024-09-02 14:58:19 · 2559 阅读 · 73 评论 -
基于 DEAP 的遗传编程实战:多变量回归问题求解
在本节中,我们使用基因表达式编程 (Gene Expression Programming, GEP) 来推导方程,解决多变量回归问题,目标是使该方程在给定多个输入值的情况下成功地回归或预测输出值。本节仅使用预先输入到目标方程式的随机输入来验证结果。然而,该方法同样可以用来执行回归,类似于在深度学习 (Deep learning, DL) 中使用的方式。原创 2024-09-06 15:53:16 · 1705 阅读 · 44 评论 -
基于 DEAP 的粒子群优化实战:复杂方程求解
粒子群优化 (Particle Swarm Optimization, PSO) 是一种借鉴适者生存和群集行为概念的进化计算方法。在本节中,我们使用 PSO 来近似求解函数所需的最优参数,展示 PSO 在解决参数函数输入上的强大能力。原创 2024-09-11 08:38:25 · 2330 阅读 · 72 评论 -
基于 DEAP 的协同进化实战:波士顿房价预测
协同进化是指确定两个或多个个体种群来解决特定问题的独特任务的算法,协同进化可以通过最小化和缩放推导方程中的特征来找到复杂的解决方案。在本节中,我们使用了协同进化(结合遗传编程和遗传算法)在波士顿房地产数据集上解决回归问题。原创 2024-09-19 10:44:22 · 1905 阅读 · 37 评论 -
基于 DEAP 的进化策略实战:多项式函数逼近
进化策略与遗传算法的主要区别在于其专注于实值优化问题和策略参数的自适应性,适用于复杂的目标函数和高维空间中的优化问题。在工程设计、机器人、经济学等领域,进化策略已被广泛应用,为在复杂环境中搜索最优解决方案提供了有效的工具。在本节中,我们使用 DEAP 实现了进化策略探索函数逼近问题。原创 2024-09-23 08:05:13 · 1413 阅读 · 0 评论 -
基于 DEAP 的差分进化实战:多项式函数逼近
差分进化 (Differential Evolution, DE) 是一种专注于连续和不连续解的函数逼近方法,但该方法并不是基于微积分,而是依赖于减少优化解的差异。在本节中,我们将使用 DE 来逼近已知的连续多项式解,以及不连续和复杂函数。当我们需要将深度学习 (Deep learning, DL) 与进化计算 (Evolutionary Computation, EC) 结合解决问题时,DE 是一个行之有效的方法。原创 2024-10-02 10:27:03 · 1818 阅读 · 29 评论 -
深度学习中的超参数优化与模型调整策略
超参数优化的目标是通过调整模型的超参数,如学习率、正则化系数、网络架构、批大小等,来最大化模型的性能和泛化能力。选择合适的方法取决于问题的特性、计算资源和优化目标的复杂性。本节中,我们介绍了一些常见模型选项和调整DL模型超参数的技巧和策略。原创 2024-10-08 07:55:26 · 3149 阅读 · 52 评论 -
神经网络超参数优化:随机搜索完整实现指南
神经网络超参数优化的随机搜索是一种用于优化神经网络超参数的方法,适用于参数空间较大或者优化目标函数表现不规则的情况。在本节中,我们学习了随机搜索的基本原理,并利用随机搜索执行神经网络自动超参数优化。原创 2024-10-11 09:22:39 · 1403 阅读 · 0 评论 -
神经网络超参数优化:网格搜索完整实现指南
网格搜索的优势在于其能够完全覆盖预定义的参数空间,确保找到最优解,然而随着参数空间的增大,网格搜索的计算成本会显著增加,因为它需要评估每个可能的参数组合。在本节中,我们介绍了网格搜索的基本原理,并学习了如何通过网格搜索自动超参数优化。原创 2024-10-14 10:51:55 · 1592 阅读 · 0 评论 -
粒子群优化在自动超参数优化中的应用实现指南
在本节中,我们将进化计算应用于深度学习模型的超参数优化,能够显著提高超参数优化的速度和准确性,通过实现粒子群优化自动超参数优化,了解到使用粒子群优化自动超参数搜索通常比网格搜索和随机搜索更有效。原创 2024-10-17 11:01:02 · 1408 阅读 · 0 评论 -
进化策略在自动超参数优化中的应用实现指南
本节中,介绍了如何使用进化策略自动化超参数优化 (Hyperparameter Optimization, HPO),主成分分析 (Principal Component Analysis, PCA) 是一种适用于 HPO 可视化的降维技术,对于复杂的多维超参数优化,可以使用降维技术生成 2D 图形来可视化不同搜索算法之间的差异。原创 2024-10-28 10:36:57 · 1279 阅读 · 69 评论 -
差分搜索在自动超参数优化中的应用实现指南
差分进化能够更加系统和高效地搜索超参数,并避免局部最小值/最大值集群。本节中,通过将差分进化 (Differential Evolution, DE) 与深度学习 (Deep learning, DL) 集成应用于超参数优化 (Hyperparameter Optimization, HPO) 。通过本节学习,可以看到 DE 方法能够用于有效改进 DL。原创 2024-11-04 08:17:31 · 1123 阅读 · 0 评论 -
使用 NumPy 从零实现神经网络:构建与训练多层感知器
在本文中, 我们了解了神经网络的相关基础知识,同时利用 Numpy 从零开始实现了神经网络的训练过程——前向传播和反向传播,了解了神经网络的通用训练流程。原创 2024-11-06 08:23:59 · 1933 阅读 · 54 评论 -
神经进化实践:用遗传算法替代反向传播优化神经网络
神经进化用来定义应用于深度学习的特定优化模式。在本节中,我们通过遗传算法优化简单深度学习网络的权重/参数,替换在误差反向传播训练过程中的所用优化器。原创 2024-11-13 10:59:59 · 1420 阅读 · 27 评论 -
神经进化实践:使用遗传算法优化 Keras 神经网络
Keras 是一个高级神经网络 API,现在已经成为 TensorFlow 的一部分,成为其默认的高级 API。Keras 的设计理念是简单易用、模块化和可扩展,能够快速实现神经网络的原型。在本节中,使用 Keras 构建了一个简单的多层感知机网络,并使用遗传算法优化该网络模型。原创 2024-11-20 10:14:02 · 2710 阅读 · 0 评论 -
卷积神经网络 (CNN) 原理详解与 Keras 实践
卷积神经网络 (Convolutional Neural Network, CNN) 的提出是为了解决传统神经网络的缺陷。即使对象位于图片中的不同位置或其在图像中具有不同占比,CNN 依旧能够正确的处理这些图像,因此在对象分类/检测任务中更加有效。在本节中,我们将使用 Keras 构建卷积神经网络模型进行图像分类,介绍 CNN 的基础知识,并构建 CNN 模型。原创 2024-11-25 09:15:20 · 2105 阅读 · 0 评论 -
进化卷积神经网络 (EvoCNN) 架构设计:基因编码与 Keras 实现
进化卷积神经网络 (Evolutionary Convolutional Neural Network, EvoCNN) 通过结合进化算法的优势,提供了一种自动化设计和优化深度学习模型的方法。在本节中,我们介绍了如何将卷积神经网络架构编码为基因序列,为构建进化卷积神经网络奠定基础。原创 2024-12-04 08:35:10 · 8202 阅读 · 56 评论 -
进化卷积神经网络 (Evolutionary Convolutional Neural Network, EvoCNN) 实战
卷积神经网络 (Convolutional Neural Network, CNN) 的设置和定义对于各种图像识别任务来说较为复杂的,通常得到最佳 CNN 超参数需要花费大量时间分析和调整。使用遗传算法进化一组个体,能够优化特定数据集上的 CNN 模型体系结构。本节中,介绍了自定义交叉和突变算子的构建方式,并使用自定义遗传算子实现进化卷积神经网络 (Evolutionary Convolutional Neural Network, EvoCNN)。原创 2024-12-12 09:34:54 · 2022 阅读 · 58 评论 -
卷积自编码器 (Convolutional AutoEncoder) 详解与实现
卷积自编码器是一种基于卷积神经网络结构的自编码器,适用于处理图像数据。卷积自编码器在图像处理领域有广泛的应用,包括图像去噪、图像压缩、图像生成等任务。通过训练卷积自编码器,可以提取出输入图像的关键特征,并实现对图像数据的降维和压缩,同时保留重要的空间信息。在本节中,我们介绍了卷积自编码器的模型架构,使用 Keras 从零开始实现在 Fashion-MNIST 数据集上训练了一个简单的卷积自编码器。原创 2024-12-24 08:55:55 · 1572 阅读 · 0 评论 -
卷积自编码器架构设计:基因编码与 Keras 实现
使用卷积层的复杂自编码器可能较难构建,可以使用神经进化构建定义编码器和解码器部分的分层架构。在编码器和解码器中使用卷积层需要额外的上采样层和匹配的层配置,这些配置可以编码成自定义的遗传序列。原创 2024-12-30 08:14:47 · 1708 阅读 · 0 评论 -
进化自编码器 (Evolutionary AutoEncoder, EvoAE) 实战
进化自编码器 (EvoAE) 是一种结合了进化算法和自编码器的模型。在本节中,我们通过构建自定义的突变和交叉操作符来处理构建进化自编码器 (AutoEncoder, AE) 所需的自定义遗传算子,并基于构建的自定义遗传算子使用遗传算法优化自编码器模型,即进化自编码器。原创 2025-01-09 11:22:04 · 1383 阅读 · 30 评论 -
变分自编码器 (Variational AutoEncoder, VAE) 详解与实现
变分自编码器是一种结合了自编码器和概率建模的生成模型,通过编码器将输入数据映射到潜在空间中的概率分布,并通过解码器将从潜在空间采样得到的潜在变量映射回原始数据空间,实现了数据的生成和特征学习。原创 2025-01-14 15:13:58 · 832 阅读 · 0 评论 -
生成对抗网络 (Generative Adversarial Networks, GAN) 详解与实现
生成对抗网络是一种强大的深度学习模型,由生成器网络和判别器网络组成,通过彼此之间的竞争来提高性能,已经在图像生成、图像修复、图像转换和自然语言处理等领域取得了巨大的成功。其核心思想是通过生成器和判别器之间的博弈过程来实现真实样本的生成。生成器负责生成逼真的样本,而判别器则负责判断样本是真实还是伪造。通过不断的训练和迭代,生成器和判别器会相互竞争并逐渐提高性能。原创 2025-01-27 11:05:08 · 1721 阅读 · 0 评论 -
WGAN (Wasserstein Generative Adversarial Networks) 详解与实现
WGAN 是 GAN 的一种变体,通过使用 Wasserstein 距离来衡量生成样本与真实样本之间的差异。在本节中,我们学习了如何使用 Wasserstein 损失函数以解决经典 GAN 训练过程中的模式坍塌和梯度消失等问题,使得 GAN 的训练过程更加稳定和可靠。原创 2025-02-01 08:15:00 · 1291 阅读 · 0 评论 -
WGAN 架构设计:基因编码与 Keras 实现
本节通过将生成对抗网络 (Generative Adversarial Networks, GAN) 封装到一个接受遗传编码基因组表示的类中,辅助平衡 GAN 的训练超参数。原创 2025-02-11 10:54:42 · 1392 阅读 · 0 评论 -
进化生成对抗网络 (Evolutionary Generative Adversarial Networks, EvoGAN) 实战
进化对抗生成网络 (EvoGAN) 是一种结合了进化算法和对抗生成网络的模型。在本节中,我们通过优化封装的 DCGAN 类优化对抗生成网络模型。原创 2025-02-14 10:43:23 · 1475 阅读 · 0 评论 -
NEAT算法解析:从增强拓扑原理到异或问题实战
NEAT (NeuroEvolution of Augmenting Topologies, 增强拓扑的神经进化)属于神经进化算法家族,能够对神经网络的拓扑结构和连接权重进行进化。其用于进化复杂人工神经网络,旨在通过在进化过程中逐步完善 ANN 的结构来减少参数搜索空间的维数。在本节中,我们将介绍 NEAT 框架,并构建 NEAT 网络以解决经典的一阶异或问题。原创 2025-02-28 08:20:13 · 1144 阅读 · 0 评论 -
NEAT算法实战:基于进化神经网络的分类问题求解
NEAT-Python 封装了许多优化模式的工具,包括网络超参数、架构和参数优化以及增加拓扑结构。在本节中,我们将使用 sklearn 库构建示例数据集可视化 NEAT 分类结果。原创 2025-03-07 08:47:33 · 787 阅读 · 26 评论 -
使用 NEAT 算法实现端到端 MNIST 手写数字识别
使用 NEAT 解决图像分类问题,可以通过进化的方式自动优化神经网络的结构和权重。结合适当的数据预处理和参数设置,可以有效地提高分类任务的性能。本节中,我们使用 MNIST 手写数字数据集执行图像分类任务,使用 NEAT 对 MNIST 数据集进行分类。原创 2025-04-03 11:43:22 · 645 阅读 · 17 评论 -
NEAT 算法中的物种分化机制与优化实践
在本节中,我们将探讨 NEAT 如何使用“物种分化 (speciation) ”的特性来跟踪种群多样性。物种分化源自生物学,是一种描述相似的有机体如何进化出独特特征以成为不同物种的方法。达尔文首先提出了物种的概念,它是一种描述地球上生命进化过程的方法。原创 2025-03-21 12:58:23 · 1114 阅读 · 24 评论 -
深度解析强化学习:原理、算法与实战
强化学习 (Reinforcement learning, RL) 的工作原理是让智能体观察环境的状态。对环境的观察或视图通常称为当前状态,智能体根据观察到的状态做出预测或动作。然后,基于该动作,环境根据给定状态提供奖励。它能够解决具有不确定性和复杂性的问题,并在动态环境下实现自主学习和决策能力。原创 2025-04-10 10:32:36 · 1558 阅读 · 31 评论