高德地图 只显示某个地区或省份,并设定显示范围

这里给大家演示只显示北京区域的地图,其他地区不显示。

一、注册高德账号

地址:高德开放平台 | 高德地图API

注册好账号后,登录点击进入“我的应用”,创建应用,获取key。

二、引入文件

        注意引入 高德组件库时,将账号中“我的应用”获取的key,替换掉代码中的“高德应用key”,否则有些数据会获取不到。

<!DOCTYPE HTML>
<html>
<head>
<meta name="viewport" content="width=device-width initial-scale=1.0 maximum-scale=1.0 user-scalable=0">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>显示北京市</title>
<style>
*, #container{ margin:0; padding: 0; width: 100%;height: 100%}
</style>
</head>
<body>
<div id="container"></div>
<script language="javascript" src="https://webapi.amap.com/maps?v=1.4.14&key=高德应用key&plugin=AMap.DistrictSearch"></script> 
</body>
</html>

这里使用多个插件,可以plugin后成以逗号形式追加,如下:

<script language="javascript" src="https://webapi.amap.com/maps?v=1.4.14&key=高德应用key&plugin=AMap.MarkerClusterer,AMap.DistrictSearch"></script> 

三、完整代码

<!DOCTYPE HTML>
<html>
<head>
<meta name="viewport" content="width=device-width initial-scale=1.0 maximum-scale=1.0 user-scalable=0">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>显示北京市</title>
<style>
*, #container{ margin:0; padding: 0; width: 100%;height: 100%}
</style>
</head>
<body>
<div id="container"></div>

<script language="javascript" src="https://webapi.amap.com/maps?v=1.4.14&key=高德应用key&plugin=AMap.DistrictSearch"></script> 
<script language="javascript">
    var options = {
        subdistrict: 0,
        extensions: 'all',
        level: 'province'
    };
    var district = new AMap.DistrictSearch(options);
    //查询北京市区域
    district.search('北京市', function(status, result) {
        var bounds = result.districtList[0]['boundaries'];
        var mask = [];
        for(var i =0;i<bounds.length;i++){
            mask.push([bounds[i]]);
        }
        //实例化地图
        var map = new AMap.Map('container', {
            mask: mask,
            zoom: 10,                //设置当前显示级别
            expandZoomRange:true,    //开启显示范围设置
            zooms: [7, 20],          //最小显示级别为7,最大显示级别为20
            center: [116.43, 39.92],
            viewMode: '3D',          //这里特别注意,设置为3D则其它地区不显示
            zoomEnable: true,        //是否可以缩放地图
            resizeEnable: true,
            mapStyle: "amap://styles/light"
        });
        //添加描边
        for(var i =0;i<bounds.length;i++){
            new AMap.Polyline({
                path:bounds[i],
                strokeColor:'#3078AC',
                strokeWeight:2,
                map:map
            })
        }
    });
    </script>
</body>
</html>

如上代码,expandZoomRange和zooms使用,可固定地图在指定地区显示范围。

是否显示指定区域以外内容,可通过viewMode进行控制,设置为3D则不显示指定地区以外部分。

04-27
<think>好的,我需要回答用户关于PCR-ASO和PCR-RDB的区别的问题,尤其是在IT领域的相关信息。首先,我得确保自己理解这两个技术的基本原理和应用,然后找出它们之间的主要差异。 用户提到的是在IT上下文中比较这两个技术,所以我需要关注它们在技术实现、自动化、数据处理等方面的差异。可能涉及探针设计、检测方法、自动化程度以及与生物信息学工具的结合情况。 首先,PCR-ASO(等位基因特异性寡核苷酸杂交)使用标记的ASO探针与固定在膜上的PCR产物杂交,用于检测已知的点突变。而PCR-RDB(反向点杂交)则是将探针固定在膜上,与标记的PCR产物杂交。这两者在探针固定方向和标记对象上有区别。 接下来要考虑它们的应用场景。PCR-ASO常用于检测特定突变,如囊性纤维化,而PCR-RDB适合同时检测多个突变,如地中海贫血的筛查。在IT领域,可能涉及高通量数据处理、自动化分析平台的使用,比如PCR-RDB可能与生物信息学工具结合更紧密,用于多目标分析。 自动化程度方面,PCR-RDB可能更易于自动化,适合大规模检测,而PCR-ASO可能更依赖手动操作。在数据输出和处理上,PCR-RDB可能生成更复杂的数据集,需要专门的软件进行分析,而PCR-ASO的结果可能更直接,但通量较低。 另外,探针设计方面,PCR-ASO需要针对每个突变设计特异性探针,而PCR-RDB使用固定探针阵列,可能更高效。错误率方面,PCR-ASO在点突变检测上特异性更高,而PCR-RDB可能存在交叉杂交的风险,需要优化探针设计。 还需要考虑与IT相关的生物信息学工具,比如PCR-RDB可能使用如BioPython定制脚本进行数据分析,而PCR-ASO可能依赖更简单的图像分析软件。数据存储和管理方面,PCR-RDB的高通量数据可能需要数据库支持,而PCR-ASO的数据量较小。 最后,确保回答结构符合用户的要求:分点说明区别,每个部分换行,包含代码示例时遵循格式,在最后生成相关问题。需要避免使用步骤词汇,整合搜索到的信息,确保准确性和实用性。</think>### PCR-ASO与PCR-RDB的技术对比 **1. 技术原理差异** - **PCR-ASO(等位基因特异性寡核苷酸杂交)** 使用标记的ASO探针(如放射性荧光标记)与固定在膜上的PCR产物杂交,通过信号强度判断目标序列是否存在。 公式示例:杂交效率与探针互补性相关,$E = k \cdot \frac{[Probe]}{[Target]}$。 - **PCR-RDB(反向点杂交)** 将探针预先固定在膜/芯片上,PCR扩增产物经标记后与探针阵列杂交,通过显色荧光信号检测多靶点。 **2. 应用场景与通量** - **PCR-ASO** - 单一位点检测(如囊性纤维化$\Delta F508$突变)。 - 需针对每个突变设计独立探针,通量较低。 - **PCR-RDB** - 多靶点行检测(如地中海贫血20种突变同时筛查)。 - 探针阵列支持高通量分析。 **3. IT领域相关特性** | **特征** | **PCR-ASO** | **PCR-RDB** | |------------------|-----------------------------|-----------------------------| | **自动化兼容性** | 依赖手动杂交,IT集成度低 | 可衔接自动化杂交仪与扫描仪 | | **数据复杂度** | 单通道信号,分析简单 | 多通道信号,需图像处理算法 | | **生物信息工具** | 基础阈值分析脚本 | 需探针定位数据库与AI分类模型| --- ### 示例代码:杂交信号分析(Python) ```python # 模拟PCR-RDB多探针信号强度分析 import numpy as np probe_signals = { "Probe1": 0.85, # 野生型 "Probe2": 0.12, # 突变型 "Control": 1.0 # 阳性对照 } def classify_mutation(signals, threshold=0.5): results = {} for probe, value in signals.items(): if "Control" not in probe: results[probe] = "Positive" if value >= threshold else "Negative" return results print(classify_mutation(probe_signals)) # 输出: {'Probe1': 'Positive', 'Probe2': 'Negative'} ``` --- ### 技术选型建议 - **优先PCR-ASO**:检测已知单一位点突变(如EGFR T790M),成本低且特异性高。 - **优先PCR-RDB**:需筛查多突变(如HLA分型)未知变异组合,适合与实验室信息管理系统(LIMS)整合。 ---
评论 35
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

觉醒法师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值