💓 博客主页:借口的CSDN主页
⏩ 文章专栏:《热点资讯》
计算机科学领域中,基于声学特征的语音情感识别技术与挑战
随着人机交互方式的不断进化,理解人类语言的情感色彩对于提升用户体验至关重要。语音情感识别(Speech Emotion Recognition, SER)作为这一领域的关键技术之一,旨在从说话者的语音信号中自动检测和分类情绪状态。近年来,由于深度学习的发展以及大数据集的可用性增加,SER研究取得了显著进展。本文将深入探讨基于声学特征的语音情感识别技术的基本原理、现有方法及面临的挑战,并结合具体案例进行分析。
声学特征是指可以从音频信号中提取出来的用于描述声音物理属性的各种参数,如频率、振幅、时长等。在语音情感识别中,这些特征能够反映出说话者的情绪变化,因此成为构建模型的重要依据。
- 频域特征:包括基频(F0)、谐波噪声比(HNR)、梅尔频率倒谱系数(MFCCs)等;
- 时域特征:例如零交叉率(ZCR)、能量(Energy)、过零率(Zero Crossing Rate)等;
- 其他特征:如语速(Speech Rate)、停顿次数(Pauses),甚至可以通过语音的韵律特征(Prosodic Features)来捕捉情感信息。
为了方便研究人员快速获取所需的声学特征,社区内已经开发了许多开源工具库,如Praat、OpenSMILE等