ML--广义线性回归(线性回归、逻辑回归)

1.线性回归

1.1 线性模型(Linear Model)

给定数据集 D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ( x 3 , y 3 ) , . . . , ( x m , y m ) } D=\left \{ \left (x_{1}\mathbf{},y_{1} \right ),\left ( x_{2},y_{2} \right ),\left (x_{3},y_{3} \right ),...,\left (x_{m},y_{m} \right ) \right \} D={ (x1,y1),(x2,y2),(x3,y3),...,(xm,ym)},其中 x i x_{i} xi d d d个特征,表示为 x i = ( x i 1 ; x i 1 ; . . . ; x i d ) x_{i}=\left ( x_{i1}; x_{i1};...;x_{id}\right ) xi=(xi1;xi1;...;xid),线性回归模型是通过 d d d个特征的线性组合对 y y y值进行拟合,即 f ( x i ) = w T x i + b f(x_{i})=w^{T}x_{i}+b f(xi)=wTxi+b,使得 f ( x i ) ≃ y i f(x_{i})\simeq y_{i} f(xi)yi

1.2 损失函数(Loss Function):Square Loss

  • 定义: L ( f ( x ) , y ) = ( f ( x ) − y ) 2 L(f(x),y)=(f(x)-y)^2 L(f(x),y)=(f(x)y)2

  • 为什么使用square loss作为损失函数:

(1)记误差 ε = y i − y i ^ \varepsilon=y_{i}-\hat{y_{i}} ε=yiyi^,假设误差独立同分布,根据中心极限定理, ε ∼ ( μ , σ 2 ) \varepsilon\sim(\mu,\sigma^2) ε(μ,σ2),得到 f ( ε ) = 1 σ 2 π e x p ( − ( ε − μ ) 2 2 σ 2 ) f(\varepsilon)=\frac{1}{\sigma\sqrt{2\pi}}exp(-\frac{(\varepsilon-\mu)^2}{2\sigma^2}) f(ε)=σ2π 1exp(2σ2(εμ)2),求 μ \mu μ σ 2 \sigma^2 σ2的极大似然估计,
L ( μ , σ 2 ) = ∏ i = 1 m 1 σ 2 π e x p ( − ( ε − μ ) 2 2 σ 2 ) L(\mu,\sigma^2)=\prod_{i=1}^{m}\frac{1}{\sigma\sqrt{2\pi}}exp(-\frac{(\varepsilon-\mu)^2}{2\sigma^2}) L(μ,σ2)=i=1mσ2π 1exp(2σ2(εμ)2),等式两边取对数,得到,
l o g L ( μ , σ 2 ) = − m 2 l o g 2 π − m 2 l o g σ 2 − ( ε − μ ) 2 2 σ 2 logL(\mu,\sigma^2)=-\frac{m}{2}log2\pi-\frac{m}{2}log\sigma^2-\frac{(\varepsilon-\mu)^2}{2\sigma^2} logL(μ,σ2)=2mlog2π2mlogσ22σ2(εμ)2,对 μ \mu μ σ 2 \sigma^2 σ2求偏导,得到
∂ L ∂ μ = 1 σ 2 ( ε − μ ) \frac{\partial{L}}{\partial{\mu}}=\frac{1}{\sigma^2}(\varepsilon-\mu) μL=σ21(εμ),
∂ L ∂ σ 2 = m 2 σ 2 + ( ε − μ ) 2 2 σ 4 \frac{\partial{L}}{\partial{\sigma^2}}=\frac{m}{2\sigma^2}+\frac{(\varepsilon-\mu)^2}{2\sigma^4} σ2L

拟(Generalized Linear Model,简称GLM)是一种广泛应用于分类和回归问题的统计模型。逻辑回归是GLM的一种特殊情况,用于解决二分类问题。 在逻辑回归中,我们希望根据输入变量的线性组合来预测一个二元变量的概率。逻辑回归使用逻辑函数(也称为sigmoid函数)将线性输出转换为概率值。逻辑函数的公式如下: p = 1 / (1 + exp(-z)) 其中,p表示概率值,z表示线性组合的结果。线性组合的计算可以表示为: z = b0 + b1*x1 + b2*x2 + ... + bn*xn 其中,b0,b1,b2...bn分别表示模型的参数(也称为系数),x1,x2...xn表示输入变量。 逻辑回归模型的训练过程是通过最大似然估计来确定参数的值,使得模型预测的概率最大化与实际观测结果的概率相符。 逻辑回归具有以下优点: - 简单易实现:模型参数的估计相对简单,可以通过常用的优化算法进行求解。 - 可解释性强:可以通过参数的值来解释变量对结果的影响程度。 - 可以处理线性可分和线性不可分的问题。 然而,逻辑回归也有一些局限性: - 只能处理二分类问题:逻辑回归只能对二元变量进行分类,无法直接处理多分类问题。 - 对线性关系敏感:逻辑回归假设输入变量与输出变量之间存在线性关系,对非线性关系的拟合能力较弱。 总的来说,逻辑回归是一种强大的分类模型,特别适用于二分类问题。在实际应用中,可以通过特征工程和模型优化来提高逻辑回归的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值