需要源码或运行有问题请点赞关注收藏后评论区留言私信~~~
一、imgaug简介
imguag使一个用于机器学习实验中图像增强的Python依赖库,支持Python2.7和Python3.4以上的版本,它支持多种图像增强技术,并允许轻松地组合这些技术,具有简单但功能强大的随机界面,支持关键点(Keypoint)和标准框(Bounding Box)一起变换,并在后台进程中提供增强功能以提高性能
在Pycharm集成开发环境中直接install即可
二、数据增强库的基本使用
单样本数据增强方法包括空间几何变换以及颜色变换,其中,几何变换的操作主要有翻转,切割,旋转,缩放变形,仿射,颜色变换的操作主要有高斯噪声,模糊,HSV对比度变换,随机擦除法,锐化与浮雕等等,图片处理结果如下
代码如下
import cv2
import numpy as np
from imgaug import augmenters as iaa
seq=iaa.Sequential([
iaa.Crop(px=(0,30)),
iaa.Fliplr(0.7),
iaa.GaussianBlur(sigma=(0,2.0)),
iaa.Dropout(0.3),
iaa.Grayscale(0.9),
iaa.Emboss(0.9),
iaa.EdgeDetect(0.5),
iaa.AdditiveGaussianNoise(loc=0,scale=50),
iaa.Multiply(2),
iaa.contrast.LinearContrast(2),
iaa.Affine(scale=0.5,translate_percent=-0.2,rotate=1,shear=90,order=1,cval=1,mode='constant'