【数据挖掘】K-Means、K-Means++、ISODATA算法详解及实战(图文解释 附源码)

聚类分析

无监督学习(Unsupervise Learning)着重于发现数据本身的分布特点。与监督学习(Supervised Learning)不同,无监督学习不需要对数据进行标记。从功能角度讲,无监督学习模型可以发现数据的“群落”,同时也可以寻找“离群”的样本。另外,对于特征维度非常高的数据样本,同样可以通过无监督学习进行数据降维,保留最具有区分性的低维度特征

聚类是一个将数据对象集划分为多个组或簇的过程,使得簇内的数据对象具有很高的相似性,但不同簇间的对象具有很高的相异性

聚类算法分类

随着聚类分析技术的蓬勃发展,目前已有很多类型的聚类算法。但很难对聚类方法进行简单的分类,因为这些类别的聚类可能重叠,从而使得一种方法具有一些交叉的特征。一般而言,聚类算法被划分为以下几类

1.划分方法

2.基于层次的方法

3.基于密度的方法

4.局域网格的方法

K-Means聚类

聚类分析中最广泛使用的算法为K-Means聚类算法

给定一个n个对象或元组的数据库,一个划分方法构建数据的k个划分,每个划分表示一个簇,k<=n,而且满足

(1)每个组至少包含一个对象;

(2)每个对象属于且仅属于一个组

划分时要求同一个聚类中的对象尽可能地接近或相关,不同聚类中的对象尽可能地远离或不同。K-Means算法是一个迭代的优化算法,最终使得下面均方误差最小。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

showswoller

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值