自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

WangXu__的博客

学习分享

  • 博客(157)
  • 收藏
  • 关注

原创 Leetcode-560. 和为K的子数组

Leetcode-560. 和为K的子数组    给定一个整数数组和一个整数 k,你需要找到该数组中和为 k 的连续的子数组的个数。示例 1 :输入:nums = [1,1,1], k = 2输出: 2 , [1,1] 与 [1,1] 为两种不同的情况。说明 :    数组的长度为 [1, 20,000]...

2019-08-02 10:07:34 279

原创 Leetcode-633. 平方数之和

Leetcode-633. 平方数之和     给定一个非负整数 c ,你要判断是否存在两个整数 a 和 b,使得 aa + bb = c。示例1:输入: 5输出: True解释: 1 * 1 + 2 * 2 = 5 示例2:输入: 3输出: False思路:     双指针法。但是注意lef...

2019-08-01 23:04:35 273

原创 Leetcode-647. 回文子串

Leetcode-647. 回文子串     给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。     具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被计为是不同的子串。示例 1:输入: "abc"输出: 3解释: 三个回文子串: "a", "b", "c".示例 2:输入...

2019-08-01 18:31:12 221

原创 Leetcode-5. 最长回文子串

Leetcode-5. 最长回文子串     给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。示例 1:输入: "babad"输出: "bab"注意: "aba" 也是一个有效答案.示例 2:输入: "cbbd"输出: "bb"思路:     中心扩展法,...

2019-08-01 18:26:31 157

原创 Leetcode-204. 计数质数

Leetcode-204. 计数质数     统计所有小于非负整数 n 的质数的数量。示例:输入: 10输出: 4解释: 小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。思路:     用dp数组存放该位置上的数值是否为质数。     第一次...

2019-07-30 23:56:21 152

原创 Leetcode-304. 二维区域和检索 - 矩阵不可变

Leetcode-304. 二维区域和检索 - 矩阵不可变    给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2)。示例:给定 matrix = [ [3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [...

2019-07-29 23:59:24 279

原创 7.k-means,k-mean++,ISODATA

k-means,k-mean++,ISODATA一、k-means    步骤:    1)k-means算法在开始的时候就首先固定K个类别,并且随机选出对应的K个点,作为K个类。    2)然后对剩余所有的点进行分类,再对每个类中所有的点对应维度相加取平均值求质心,把该...

2019-07-22 16:24:28 777

原创 6.PCA(主成分分析)

PCA(主成分分析)一、PCA用于降维,保留最重要的K个特征,降维的目的    1)使数据易于处理    2)去除噪声    3)较低计算的开销    4)使结果更容易理解二、PCA的具体流程  &nbsp...

2019-07-22 15:15:31 478

原创 5.logistic回归

logistic回归一、logistic回归所用到的激活函数为sigmoid函数: 二、二分类的逻辑斯蒂回归为:     一件事情发生的几率为该事件发生的概率与不发生的概率的比值 三、计算逻辑斯蒂回归的目标函数:即求对于所有样本点,其估计正确概率最大的使得L(W)最大值的W    二分类问题...

2019-07-22 14:47:06 361

原创 4.决策树

决策树一、决策树概述     训练阶段,根据训练数据构造决策树模型;在测试阶段,对数据进行分类。     决策树重要的三个阶段:1.特征的选择 2.决策树的生成 3.决策树剪枝     决策树内部节点表示特征或者属性,叶节点表示类别。   ...

2019-07-22 11:42:35 334

原创 3.朴素贝叶斯

朴素贝叶斯一、朴素贝叶斯概述    朴素贝叶斯是基于贝叶斯定理和特征条件独立假设方法的分类方法。即根据先验概率和条件概率求后验概率。.    之所以叫朴素是因为不同维度的特征之间相互独立,若不同维度之间有了依存关系则称为贝叶斯网络。    朴素贝叶斯分类,即判断所计算的后...

2019-07-22 11:03:49 317

原创 2.KNN(k近邻)

KNN(k近邻)一、KNN概述    KNN一般是用于分类的机器学习方法    KNN中重要的三个步骤为:        1、K值的选择       &nbsp...

2019-07-19 16:02:18 220

原创 1.感知机

感知机一、感知机概述    感知机是应用于二分类线性可分问题的分类器。目的在于找到一个分离超平面,能够正确分类训练集中的所有正负样本点。二、目标函数及参数优化2.1 前向运算    由输入空间(特征空间)到输出空间的函数为:f(X)=sign(WX+b)    其中...

2019-07-18 16:21:22 692

原创 优化器

优化器一、优化器概述    根据前向传播求得损失,然后利用优化器对模型参数进行优化。二、常见的优化器2.1 SGD    数学公式:     利用损失函数J(θ),反向传播求得θ的导数,通过链式法则对θ进行更新。其中η为学习步长(学习率)。 &nbs...

2019-07-18 16:08:47 1260

原创 损失函数

损失函数(目标函数)一、损失函数概述    损失函数即为目标函数,用来衡量计算值与真实值之间的差距。    经验风险损失:即为训练数据预测结果和真实结果之间的差距。    结构风险损失:即在经验风险损失的基础之上加上了正则化项。   &nb...

2019-07-18 15:57:35 662

原创 激活函数

激活函数一、激活函数概述及其作用    如果没有激活函数,可以证明即使网络再深,也只是输入的线性组合,与隐藏层的深度没有关系。引入激活函数,即非线性函数,增强了网络的非线性表达,获得更强大的学习和拟合能力。二、常用的激活函数2.1 Sigmoid    数学形式:    ...

2019-07-18 15:36:36 304

原创 3.GRU

GRU(Gated Recurrent Unit)一、GRU简述    GRU是LSTM的一个变体,其合并了LSTM的输入门和遗忘门,并且合并了记忆状态和隐藏状态。在GRU中除了贯穿于整个状态的隐藏状态外,只有更新门和重置门。因此GRU参数上比LSTM少很多,并且训练速度也比LSTM快。二、具体结构 三、结构模块解析  &...

2019-07-16 17:21:21 1572

原创 2.LSTM

LSTM(long short-Term Memory,长短时记忆模型)一、LSTM简述    LSTM是基于RNN进行修改,属于RNN的一种变形,为了避免RNN中出现的梯度消失问题。对比RNN,LSTM中多了一条贯穿所有状态的记忆状态,所有的遗忘门、记忆们、输出门也都结合记忆状态进行操作。二、LSTM的具体结构   &...

2019-07-16 17:17:52 521

原创 1.RNN

RNN(Recurrent Neural Network)一、RNN的概述    比较擅长处理时间序列以及一些结构性的输入。RNN在前向传播的过程中,在t时刻,不仅传入当前状态xt,而且同时传入t-1时刻的隐藏状态ht-1,因此在t时刻不仅考虑输入,而且会考虑前几个状态,从而预测该状态,产生该状态的输出。二、RNN的前向传播  &nb...

2019-07-16 17:08:45 386

原创 7.CNN设计原则

CNN设计原则

2019-07-15 22:53:46 577 3

原创 6.DenseNet

DenseNet     DenseNet改进的优点:    1、设计了dense block块,可以这样理解,第n层的输入依赖于前面n-1层的输出。减轻了梯度消失问题,加强了特征之间的传递性,有效利用了特征。并且防止过拟合。    2、densenet中利用transit...

2019-07-15 22:49:16 130

原创 5.ResNeXt

ResNeXt     ResNeXt改进:     1、提出了ResNeXt块:把resnet blocks里面11的卷积核以及33卷积核的数量64降低为4,然后增加了32个并行的分支,对32个分支的结果进行一个加和操作。ResNeXt块的参数量和resnet blocks差不多,但是网络的表达能力更强了。...

2019-07-15 22:46:40 205

原创 4.ResNet

ResNet    ResNet是2015年ImageNet比赛在classification上的冠军。    ResNet的优点:    1、设计了残差块的结构(residual block),使得网络深度增加了。对于更深的网络,存在一个很大的问题就是梯度消失的问题,因此...

2019-07-15 22:41:57 695

原创 3.GoogleNet

GoogLeNet    GoogleNet是2014年ImageNet的冠军,它颠覆了大家对于卷积网络的串联的印象和固定的做法,采用了一种非常有效的 inception 模块,增加了网络的宽度,得到了比 VGG 更深的网络结构,并且比 VGG 的参数更少,因为去掉了后面的全连接层,所以参数大大减少,同时有了很高的计算效率,即Inception结构。&n...

2019-07-15 22:30:41 156

原创 2.VGGNet

VGGNet    一、VGGNet,是ImageNet2014年的亚军,其网络结构非常简单,就是不断的堆叠卷积层和池化层。分别有VGG16和VGG19,其区别就是网络层数不一样,其中VGG16是由13层卷积层和3层全连接层组成,VGG19是由16层卷积层和3层全连接层组成。    二、对比AlexNet,VGG网...

2019-07-15 22:10:48 131

原创 1.AlexNet

AlexNet    AlexNet 2012年刷新了分类的记录,拿到ImageNet的冠军,AlexNet标志着DNN深度学习革命的开始。    其中5个卷积层、3个最大池化层、3个全连接层,用到的卷积核为11 * 11,5 * 5,3 * 3的卷积核。在网络中用到了ReLU激活函数、全局最大池化、全连接层的时候...

2019-07-15 22:03:49 132

原创 8.YOLO V3

YOLO V3 一、小象学院课程    YOLO v3对于YOLO v2的改进:    1、在分类中,YOLOv3中用logistic loss 替换了softmax损失    2、yolo v3对于3种不同尺度的特征,对于每一个grid(像素点)分别提取了3个尺寸...

2019-07-15 15:39:15 150

原创 7.YOLO V2

YOLO V2 YOLO 9000 一、YOLOv2小象学院课程课件    YOLOv2 基于YOLOV1的改进:    1、BN:所有卷积层之后都加上了batch Normalization    2、高分辨分类:在用ImageNet模型分类的时候,全部把Imag...

2019-07-15 15:34:34 170

原创 6.YOLO V1

YOLO V1 CVPR2016 一、优缺点       优点:       1、检测物体的速度很快,对于划分的77的网络,只对492 = 98个bounding box进行判断       2、假阳性率低,即检测错误的很低,即不是目标误认为目标。  ...

2019-07-15 15:27:36 183

原创 Leetcode-46. 全排列

Leetcode-46. 全排列给定一个没有重复数字的序列,返回其所有可能的全排列。示例:输入: [1,2,3]输出:[ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1]]思路:    递归的方法求解,固定前面的数,然后不断交换后面的数。C++ code:c...

2019-07-12 20:25:58 94

原创 Leetcode-89. 格雷编码

Leetcode-89. 格雷编码格雷编码是一个二进制数字系统,在该系统中,两个连续的数值仅有一个位数的差异。给定一个代表编码总位数的非负整数 n,打印其格雷编码序列。格雷编码序列必须以 0 开头。示例 1:输入: 2输出: [0,1,3,2]解释:00 - 001 - 111 - 310 - 2对于给定的 n,其格雷编码序列并不唯一。例如,[0,2,3,1] 也是一个有...

2019-07-08 23:18:01 205

原创 Leetcode-124. 二叉树中的最大路径和

Leetcode-124. 二叉树中的最大路径和给定一个非空二叉树,返回其最大路径和。本题中,路径被定义为一条从树中任意节点出发,达到任意节点的序列。该路径至少包含一个节点,且不一定经过根节点。示例 1:输入: [1,2,3] 1 / \ 2 3输出: 6示例 2:输入: [-10,9,20,null,null,15,7] -10...

2019-07-08 15:04:56 143

原创 Leetcode-62. 不同路径

Leetcode-62. 不同路径一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。问总共有多少条不同的路径?例如,上图是一个7 x 3 的网格。有多少可能的路径?说明:m 和 n 的值均不超过 100。示例 1:输入: m = 3, n = 2输...

2019-07-08 11:33:16 186

原创 Leetcode-104. 二叉树的最大深度

Leetcode-104. 二叉树的最大深度给定一个二叉树,找出其最大深度。二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。说明: 叶子节点是指没有子节点的节点。示例:给定二叉树 [3,9,20,null,null,15,7], 3 / \ 9 20 / \ 15 7返回它的最大深度 3 。思路1:  &nbs...

2019-07-04 17:29:05 172

原创 Leetcode-235. 二叉搜索树的最近公共祖先

Leetcode-235. 二叉搜索树的最近公共祖先给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,...

2019-07-04 12:37:45 442

原创 20190702-剑指offer68-AcWing-88. 树中两个结点的最低公共祖先

剑指offer68-AcWing-88. 树中两个结点的最低公共祖先给出一个二叉树,输入两个树节点,求它们的最低公共祖先。一个树节点的祖先节点包括它本身。注意:输入的二叉树不为空;输入的两个节点一定不为空,且是二叉树中的节点;样例二叉树[8, 12, 2, null, null, 6, 4, null, null, null, null]如下图所示: 8 / \ 1...

2019-07-02 18:03:34 196

原创 剑指offer67 把字符串转换成整数

剑指offer67-AcWing-87. 把字符串转换成整数请你写一个函数StrToInt,实现把字符串转换成整数这个功能。当然,不能使用atoi或者其他类似的库函数。样例输入:"123"输出:123注意:你的函数应满足下列条件:忽略所有行首空格,找到第一个非空格字符,可以是 ‘+/−’ 表示是正数或者负数,紧随其后找到最长的一串连续数字,将其解析成一个整数;整数后可能有任意非...

2019-07-02 11:49:46 121

原创 剑指offer66 构建乘积数组

剑指offer66-AcWing-86. 构建乘积数组给定一个数组A[0, 1, …, n-1],请构建一个数组B[0, 1, …, n-1],其中B中的元素B[i]=A[0]×A[1]×… ×A[i-1]×A[i+1]×…×A[n-1]。不能使用除法。样例输入:[1, 2, 3, 4, 5]输出:[120, 60, 40, 30, 24]思考题:能不能只使用常数空间?(除了输出的...

2019-07-02 11:28:06 131

原创 剑指offer65 不用加减乘除做加法

剑指offer65-AcWing-85. 不用加减乘除做加法写一个函数,求两个整数之和,要求在函数体内不得使用+、-、×、÷ 四则运算符号。样例输入:num1 = 1 , num2 = 2输出:3思路:     1.num1 与 num2取异或为sum,即相同的为0,然后相异的为1。这样两数相加,同位上都是1的,本来应该进位的没有进位。&nb...

2019-07-02 10:45:20 111

原创 剑指offer64 求1+2+…+n

剑指offer64-AcWing-84. 求1+2+…+n求1+2+…+n,要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句(A?B:C)。样例输入:10输出:55思路:     递归进行,利用&&短路运算来终止判断C++ code:class Solution {pu...

2019-06-30 19:14:33 140

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除