Doris高性能读能力与实时性实现原理

#新星杯·14天创作挑战营·第11期#

一、读性能优异的核心原因
‌        MPP 分布式架构‌:采用大规模并行处理架构,将查询请求拆解为多个子任务并行执行,BE 节点之间通过数据分片并行计算‌实现负载均衡,线性扩展处理能力。
        单查询可同时利用多节点 CPU 资源,10PB级数据亚秒级响应(P95 响应时间 <1 秒)。
‌向量化执行引擎‌

        基于 SIMD 指令集的向量化处理,单次运算处理1024行数据块‌,相比传统行式引擎效率提升 5-10 倍。
        通过减少虚函数调用、提升 CPU 缓存命中率等优化,降低复杂查询的计算开销。
‌        列存储与智能压缩‌:数据按列存储配合 ‌ZSTD/LZ4 压缩算法‌,相同数据量下 I/O 吞吐量比行存降低 60%-90%。
        通过 ‌前缀索引+稀疏索引‌ 组合,快速定位目标数据块,减少磁盘扫描范围。
‌        数据局部性优化‌:分布式存储层 BE 节点同时承担计算任务,消除传统架构中存储与计算分离的跨网络数据传输开销‌。
        分区分桶策略保障相同分片数据集中存储,降低 Join 操作的数据 Shuffle 成本。

二、实时分析能力实现原理
        ‌数据实时摄入链路‌:提供 Stream Load/Broker Load 等毫秒级延迟写入接口‌,支持 Kafka、Flink 等流式数据直接写入内存 MemTable。
        内存数据通过:两阶段提交协议‌ 保障事务一致性,写入完成即可查。
        ‌内存优先处理机制‌:新写入数据优先驻留内存 MemTable,查询时自动合并内存与磁盘数据,实现读写分离‌(Write-Ahead 模式)。
        后台异步 Compaction 对磁盘数据进行有序归并,避免实时查询时的多版本合并开销。
‌存算一体架构设计‌

        FE 节点统一管理元数据并生成分布式执行计划,BE节点本地化执行计算任务,消除传统数仓 ETL 链路延迟。
        支持联邦查询‌ 功能,通过外表机制直接查询 Hive/Iceberg 数据湖,避免数据迁移实现分钟级数据可见。

        Doris 通过 ‌分布式并行架构+列式存储优化‌ 解决海量数据扫描效率问题,依托 ‌内存优先处理+存算一体设计‌ 实现亚秒级实时响应。其核心技术已在顺丰、美团等企业实现单集群日均 100 万+查询的稳定支撑,成为替代传统 Presto/Hive 的实时数仓首选方案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jiedaodezhuti

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值