转载:https://blog.csdn.net/dcrmg/article/details/79091941
tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置:
-
config = tf.ConfigProto(allow_soft_placement=
True, allow_soft_placement=
True)
-
config.gpu_options.per_process_gpu_memory_fraction =
0.4
#占用40%显存
-
sess = tf.Session(config=config)
1. 记录设备指派情况 : tf.ConfigProto(log_device_placement=True)
设置tf.ConfigProto()中参数log_device_placement = True ,可以获取到 operations 和 Tensor 被指派到哪个设备(几号CPU或几号GPU)上运行,会在终端打印出各项操作是在哪个设备上运行的。
2. 自动选择运行设备 : tf.ConfigProto(allow_soft_placement=True)
在tf中,通过命令 "with tf.device('/cpu:0'):",允许手动设置操作运行的设备。如果手动设置的设备不存在或者不可用,就会导致tf程序等待或异常,为了防止这种情况,可以设置tf.ConfigProto()中参数allow_soft_placement=True,允许tf自动选择一个存在并且可用的设备来运行操作。
3. 限制GPU资源使用:
为了加快运行效率,TensorFlow在初始化时会尝试分配所有可用的GPU显存资源给自己,这在多人使用的服务器上工作就会导致GPU占用,别人无法使用GPU工作的情况。
tf提供了两种控制GPU资源使用的方法,一是让TensorFlow在运行过程中动态申请显存,需要多少就申请多少;第二种方式就是限制GPU的使用率。
一、动态申请显存
-
config = tf.ConfigProto()
-
config.gpu_options.allow_growth =
True
-
session = tf.Session(config=config)
二、限制GPU使用率
-
config = tf.ConfigProto()
-
config.gpu_options.per_process_gpu_memory_fraction =
0.4
#占用40%显存
-
session = tf.Session(config=config)
或者:
-
gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=
0.4)
-
config=tf.ConfigProto(gpu_options=gpu_options)
-
session = tf.Session(config=config)
设置使用哪块GPU
方法一、在python程序中设置:
-
os.environ[
'CUDA_VISIBLE_DEVICES'] =
'0'
#使用 GPU 0
-
os.environ[
'CUDA_VISIBLE_DEVICES'] =
'0,1'
# 使用 GPU 0,1
方法二、在执行python程序时候:
CUDA_VISIBLE_DEVICES=0,1 python yourcode.py
推荐使用更灵活一点的第二种方法。