【LeeCode精选】169. 求众数

给定一个大小为 n 的数组,找到其中的众数。众数是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素。

你可以假设数组是非空的,并且给定的数组总是存在众数。

示例 1:

输入: [3,2,3] 输出: 3

示例 2:

输入: [2,2,1,1,1,2,2] 输出: 2

解析:

题目咋一看感觉稳了有木有,解题思路出奇的清晰啊:构造一个hash存储结构,将数组中元素值作为key,该元素出现的次数作为value存放在hash中,遍历hash找出第一个value大于n/2的key返回即可。

public static int majorityElement(int[] nums) {
    Map<Integer, Integer> hash = new HashMap<>();
    for (int i = 0; i < nums.length; i++) {
        Integer temp = null;
        hash.put(nums[i], null != (temp = hash.get(nums[i]))?++temp:1);
    }
    for (Integer in : hash.keySet()) {
        if (hash.get(in) > (nums.length/2)) {
            return in;
        }
    }
    return 0;
}

可以看出如上思路的代码实现时间复杂度O(n),空间复杂度也为O(n)。

那么,问题来了,有没有更高效(无论从时间上和空间上)的方式来解决这个问题呢?

答案是有的,采用摩尔投票法,其算法思想为:将数组中的第一个数假设为众数,然后进行统计其出现的次数,如果遇到同样的数,则计数器自增1,否则计数器自减1,如果计数器减到了0,则更换下一个数字为候选者。

public static int majorityElement1(int[] nums) {
    //假设第一个节点为目标节点
    int temp = nums[0];
    int count = 1;
    for (int i = 1; i < nums.length; i++) {
        //若上次循环累积次数为零,则更新当前节点为目标节点并设累计次数为1
        if (0 == count) {
            temp = nums[i];
            count = 1;
        }else {
            //否则累加或者累减
            if (nums[i] == temp) {
                count++;
            }else {
                count--;
            }
        }
    }
    return temp;
}

可见此实现的时间复杂度为O(n),而空间复杂度则缩减为了O(1)。

后记 从官方的题解上看,摩尔投票法被放在了最后,显然是压轴的解法(最优解),至于其他诸如暴力、哈希表、排序、随机化以及分治等解法,大家可以参考下官方题解,从不同方面与摩尔投票法做下对比。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值