浏览器禁用了自动全屏Failed to execute ‘requestFullscreen‘ on ‘Element‘: API can only be initiated by a user...

这个错误信息 "Failed to execute 'requestFullscreen' on 'Element': API can only be initiated by a user gesture" 指的是在Web开发中,尝试通过JavaScript代码调用requestFullscreen()方法来使一个元素进入全屏模式时,这个调用没有成功,因为它违反了浏览器的安全策略。
在这里插入图片描述
在这里插入图片描述

原因

现代浏览器出于安全考虑,限制了许多可以自动执行的功能,特别是那些可能会影响到用户体验或隐私的功能。全屏模式是一个显著的例子,因为它会改变用户的屏幕布局和可视内容。因此,浏览器要求全屏模式的请求必须是由用户的直接操作(如点击或触摸事件)触发的。

解决方案

  1. 确保全屏请求是由用户交互触发的
    requestFullscreen()方法的调用放在一个事件监听器内部,这个监听器应该监听用户的某个交互事件,如点击或触摸事件。例如:

    document.getElementById('myButton').addEventListener('click', function() {
        var elem = document.documentElement; // 例如,使整个页面进入全屏
        if (elem.requestFullscreen) {
            elem.requestFullscreen();
        } else if (elem.mozRequestFullScreen) { /* Firefox */
            elem.mozRequestFullScreen();
        } else if (elem.webkitRequestFullscreen) { /* Chrome, Safari & Opera */
            elem.webkitRequestFullscreen();
        } else if (elem.msRequestFullscreen) { /* IE/Edge */
            elem.msRequestFullscreen();
        }
    });
    
  2. 避免在文档加载或脚本执行时自动调用全屏
    不要将requestFullscreen()放在如window.onloadDOMContentLoaded等自动执行的事件处理程序中。

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jieyucx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值