倍增法
祖孙询问
Description
已知一棵n个节点的有根树。有m个询问。每个询问给出了一对
节点的编号x和y,询问x与y的祖孙关系。
Input Format
输入第一行包括一个整数n表示节点个数。
接下来n行每行一对整数对a和b表示a和b之间有连边。如果b是−1,那么a就是树的根。
第n+2行是一个整数m表示询问个数。
接下来m行,每行两个正整数x和y。
Output Format
对于每一个询问,输出1:如果x是y的祖先,输出2:如果y是x的祖先,否则输出0。
Sample Input
10
234 -1
12 234
13 234
14 234
15 234
16 234
17 234
18 234
19 234
233 19
5
234 233
233 12
233 13
233 15
233 19
Sample Output
1
0
0
0
2
代码:
#include<bits/stdc++.h>
using namespace std;
const int N=40220,M=N*2;
const int INF=0x3f3f3f3f;
/*
最近公共祖先:倍增
*/
int n,m;
int h[N],e[N],ne[N],idx;
int depth[N],fa[N][16];
int q[N];
void add(int a,int b){
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
void bfs(int root){//预处理
memset(depth,0x3d,sizeof depth);
depth[0]=0,depth[root]=1;
queue<int> q;
q.push(root);
while(q.size()){
int t=q.front();
q.pop();
for(int i=h[t];~i;i=ne[i]){
int j=e[i];
if(depth[j]>depth[t]+1){
depth[j]=depth[t]+1;//标记节点深度
q.push(j);
fa[j][0]=t;//标记父节点
for(int k=1;k<=15;k++)//标记2^k步的祖宗
fa[j][k]=fa[fa[j][k-1]][k-1];
}
}
}
}
int lca(int a,int b){
if(depth[a]<depth[b]) swap(a,b);
for(int k=15;k>=0;k--)//让a和b到同一层去(二进制拼凑法)
if(depth[fa[a][k]]>=depth[b])
a=fa[a][k];
if(a==b) return a;//b是a的祖宗
for(int k=15;k>=0;k--)
if(fa[a][k]!=fa[b][k]){//搜索到最近公共祖先的下一层
a=fa[a][k];
b=fa[b][k];
}
return fa[a][0];
}
int main()
{
cin>>n;
int root=0;
memset(h,-1,sizeof h);
for(int i=0;i<n;i++){
int a,b;
cin>>a>>b;
if(b==-1) root=a;
else add(a,b),add(b,a);
}
bfs(root);
cin>>m;
while(m--){
int a,b;
cin>>a>>b;
int p=lca(a,b);
if(p==a) puts("1");
else if (p==b) puts("2");
else puts("0");
}
return 0;
}
Tarjan线性
给出 n 个点的一棵树,多次询问两点之间的最短距离。
注意:
边是无向的。
所有节点的编号是 1,2,…,n。
输入格式
第一行为两个整数 n 和 m。n 表示点数,m 表示询问次数;
下来 n−1 行,每行三个整数 x,y,k,表示点 x 和点 y 之间存在一条边长度为 k;
再接下来 m 行,每行两个整数 x,y,表示询问点 x 到点 y 的最短距离。
树中结点编号从 1 到 n。
输出格式
共 m 行,对于每次询问,输出一行询问结果。
数据范围
2≤n≤104,
1≤m≤2×104,
0<k≤100,
1≤x,y≤n
输入样例1:
2 2
1 2 100
1 2
2 1
输出样例1:
100
100
代码
#include<bits/stdc++.h>
using namespace std;
const int N=40220,M=N*2;
const int INF=0x3f3f3f3f;
typedef pair<int,int> PII;
int n,m;
int h[N],e[M],ne[M],w[M],idx;
int p[N],dist[N],st[N];
int res[N];
vector<PII> query[N];//存的查询的另外一个点和编号
void add(int a,int b,int c){
e[idx]=b,ne[idx]=h[a],w[idx]=c,h[a]=idx++;
}
void dfs(int u,int fa){
for(int i=h[u];~i;i=ne[i]){
int j=e[i];
if(j==fa) continue;
dist[j]=dist[u]+w[i];
dfs(j,u);
}
}
int find(int x){
if(p[x]!=x) p[x]=find(p[x]);
return p[x];
}
void tarjan(int u){
st[u]=1;
for(int i=h[u];~i;i=ne[i]){
int j=e[i];
if(!st[j]){
tarjan(j);
p[j]=u;
}
}
for(auto it:query[u]){
int y=it.first,id=it.second;
if(st[y]==2){
int anc=find(y);
res[id]=dist[u]+dist[y]-2*dist[anc];
}
}
st[u]=2;
}
int main()
{
cin>>n>>m;
memset(h,-1,sizeof h);
for(int i=0;i<n-1;i++){
int a,b,c;
cin>>a>>b>>c;
add(a,b,c),add(b,a,c);
}
for(int i=0;i<m;i++){
int a,b;
cin>>a>>b;
if(a!=b){
query[a].push_back({b,i});
query[b].push_back({a,i});
}
}
for(int i=1;i<=n;i++) p[i]=i;
dfs(1,-1);
tarjan(1);
for(int i=0;i<m;i++) cout<<res[i]<<endl;
return 0;
}
全排列函数
do
{
printf("%d %d %d\n",s[0],s[1],s[2]);
}
while(next_permutation(s,s+3));