题目1
给定一个链表,判断链表中是否有环。
如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。
如果链表中存在环,则返回 true 。 否则,返回 false 。
进阶:
你能用 O(1)(即,常量)内存解决此问题吗?
示例 1:
输入:head = [3,2,0,-4], pos = 1
输出:true
解释:链表中有一个环,其尾部连接到第二个节点。
示例 2:
输入:head = [1,2], pos = 0
输出:true
解释:链表中有一个环,其尾部连接到第一个节点。
示例 3:
输入:head = [1], pos = -1
输出:false
解释:链表中没有环。
提示:
- 链表中节点的数目范围是 [0, ]
- <= Node.val <=
- pos 为 -1 或者链表中的一个 有效索引 。
解题思路
方法一:哈希表
思路及算法
最容易想到的方法是遍历所有节点,每次遍历到一个节点时,判断该节点此前是否被访问过。
具体地,我们可以使用哈希表来存储所有已经访问过的节点。每次我们到达一个节点,如果该节点已经存在于哈希表中,则说明该链表是环形链表,否则就将该节点加入哈希表中。重复这一过程,直到我们遍历完整个链表即可。
C++
class Solution {
public:
bool hasCycle(ListNode *head) {
unordered_set<ListNode*> seen;
while (head != nullptr) {
if (seen.count(head)) {
return true;
}
seen.insert(head);
head = head->next;
}
return false;
}
};
Python
class Solution:
def hasCycle(self, head: ListNode) -> bool:
seen = set()
while head:
if head in seen:
return True
seen.add(head)
head = head.next
return False
复杂度分析
- 时间复杂度:O(N),其中 N 是链表中的节点数。最坏情况下我们需要遍历每个节点一次。
- 空间复杂度:O(N),其中 N 是链表中的节点数。主要为哈希表的开销,最坏情况下我们需要将每个节点插入到哈希表中一次。
方法二:快慢指针
思路及算法
本方法需要读者对「Floyd 判圈算法」(又称龟兔赛跑