/*
题目描述:对于一个字符串s,如果将s的左右相连成一个圈后,这个圈是由相同的多个字符片段构成,那么这个串称为
“迷人串”,问在s的一端最少加上多少个字符,可以使s成为“迷人串”。
思路:借助扩展KMP中的next数组(代码中为f数组),len表示s的长度,f[i]表示s[i......(len-1)]与s[0......(len-1)]匹
配的最长长度,从0到len - 1 枚举i,如果i - 1 + next[i] == len - 1,说明s[0...(i - 1)]可以作为循环的一个片段,这
个片段的长度是i(可以用“abcabca”来理解一下,其中“abc”就是一个循环的片段),算出出现的片段数
cnt(“abcabca”中“abc”出现3次,第三次只露出一个“a”),答案就是最小的cnt * i - len
*/
#pragma warning(disable:4786)
#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<cmath>
#include<string>
#include<sstream>
#define LL long long
#define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;++i)
#define mem(a,x) memset(a,x,sizeof(a))
#define lson l,m,x<<1
#define rson m+1,r,x<<1|1
using namespace std;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
const double PI = acos(-1.0);
const double eps=1e-8;
const int maxn = 100005;
int f[maxn], extend[maxn];
char s[maxn];
void GetF(const char *T) {
int len = strlen(T), a = 0;
f[0] = len;
while (a < len - 1 && T[a] == T[a + 1]) a++;
f[1] = a;
a = 1;
for (int k = 2; k < len; k++) {
int p = a + f[a] - 1, L = f[k - a];
if ((k - 1) + L >= p) {
int j = (p - k + 1) > 0 ? (p - k + 1) : 0;
while (k + j < len && T[k + j] == T[j]) j++;
f[k] = j;
a = k;
}
else
f[k] = L;
}
}
void GetExtand(const char *S, const char *T) {
GetF(T);
int slen = strlen(S), tlen = strlen(T), a = 0;
int MinLen = slen < tlen ? slen : tlen;
while (a < MinLen && S[a] == T[a]) a++;
extend[0] = a;
a = 0;
for (int k = 1; k < slen; k++) {
int p = a + extend[a] - 1, L = f[k - a];
if ((k - 1) + L >= p) {
int j = (p - k + 1) > 0 ? (p - k + 1) : 0;
while (k + j < slen && j < tlen && S[k + j] == T[j]) j++;
extend[k] = j;
a = k;
}
else
extend[k] = L;
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--){
scanf("%s" , s );
GetF( s );
int len = strlen(s) , ans = len;
for(int i =1 ; i<len ; i++){
if(f[i] + i - 1 < len - 1) continue;
int length = i , add;
if(f[i] % length == 0){
add = f[i] / length ;
}
else{
add = f[i] / length + 1;
}
int time = 1 + add;
ans = min(ans , time * length - len) ;
}
printf("%d\n",ans);
}
return 0;
}
hdu3746Cyclic Nacklace 扩展KMP
最新推荐文章于 2019-01-14 12:01:00 发布