/*
题目描述:按照数列a给定的顺序a[1],a[2],......,a[n]建立一棵二叉搜索树,然后对所有i(i > 1)输出值为a[i]节点的父节点的值
思路:想象有一个初始全为0的数组b,每输入一个a[i],就把b[a[i]]标记为其输入顺序i,即令b[a[i]] = i , 通过观察发现,从
位置a[i]开始,在数组b中向左找到第一个位置l使得b[l]!= 0, 向右找到第一个位置r使得b[r] != 0,那么值为a[i]节点的父节点
是第max(b[l] , b[r])个输入的数(如果向左找不到则b[l] = 0 , 向右找不到则b[r] = 0),以上过程可以通过第二组样例
模拟体会一下。
b[a[i]]能被访问需要b有1e9的空间,无法实现,因此需要离散化。
离散化之后,第一段中描述的内容可以通过线段树来实现,具体见代码及代码注释。
*/
#pragma warning(disable:4786)
#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<cmath>
#include<string>
#include<sstream>
#define LL long long
#define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;++i)
#define mem(a,x) memset(a,x,sizeof(a))
#define lson l,m,x<<1
#define rson m+1,r,x<<1|1
using namespace std;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
const double PI = acos(-1.0);
const double eps=1e-6;
const int maxn = 1e5 + 5;
int lisan[maxn] , a[maxn] ;
struct node
{
int lmost , rmost ; //线段树每个节点x维护两个量,lmost为b[l ~ r]中的某一个b[pos],pos是最接近l的且b[pos]!= 0的位置
}t[4 * maxn];
void pushup(int l , int r , int x) //如何通过两个子节点的lmost和rmost得到父节点的lmost和rmost
{
if(t[x<<1].lmost != 0)
t[x].lmost = t[x<<1].lmost ;
else
t[x].lmost = t[x<<1|1].lmost ;
if(t[x<<1|1].rmost != 0)
t[x].rmost = t[x<<1|1].rmost;
else
t[x].rmost = t[x<<1].rmost;
}
void build(int l , int r , int x)
{
if(l == r){
t[x].lmost = t[x].rmost = 0 ;
return ;
}
int m = l + (r - l)/ 2 ;
build(lson);
build(rson);
pushup(l , r , x) ;
}
int query_left(int L , int R , int l , int r , int x)
{
if(L == l && R == r){
return t[x].lmost;
}
int m = l + (r - l)/ 2;
if(L > m)
return query_left(L , R , rson);
else if(R <= m)
return query_left(L , R , lson);
else{
int ret1 = query_left(L , m , lson);
int ret2 = query_left(m + 1 , R , rson) ;
if(ret1 != 0)
return ret1 ;
else
return ret2;
}
}
void modify(int pos , int val , int l , int r , int x)
{
if(l == r && l == pos){
t[x].lmost = t[x].rmost = val ;
return ;
}
int m = l + (r - l)/ 2 ;
if(pos <= m)
modify(pos , val , lson);
else
modify(pos , val , rson);
pushup(l , r , x);
}
int query_right(int L , int R , int l , int r , int x)
{
if(L == l && R == r){
return t[x].rmost;
}
int m = l + (r - l)/ 2;
if(L > m)
return query_right(L , R , rson);
else if(R <= m)
return query_right(L , R , lson);
else{
int ret1 = query_right(L , m , lson);
int ret2 = query_right(m + 1 , R , rson) ;
if(ret2 != 0)
return ret2 ;
else
return ret1;
}
}
int bsearch(int left , int right , int val )
{
int mid , ret = -1 ;
while(left <= right){
mid = left + (right - left) / 2 ;
if(lisan[mid] < val){
left = mid + 1;
}
else if(lisan[mid] > val){
right = mid - 1 ;
}
else
return mid;
}
}
int main()
{
int n , cnt = 0 , cur = 1 ;
scanf("%d",&n);
for(int i = 1 ; i<= n ; i++){
scanf("%d",&a[i]);
lisan[++cnt] = a[i] ;
}
sort(lisan + 1 , lisan + n + 1 ) ;
int len = unique(lisan + 1 , lisan + n + 1 ) - lisan - 1 ;
build(1 , len , 1) ;
int fis = bsearch(1 , len , a[1]) ;
modify(fis , cur ++ , 1 , len , 1) ;
for(int i = 2 ; i<= n ; i++){
int p = bsearch(1 , len , a[i]) ;
int ans = 0 , ans1 = 0 , ans2 = 0 ;
if(p != 1)
ans1 = query_right(1 , p - 1 , 1 , len , 1) ;
if(p != len)
ans2 = query_left(p + 1 , len , 1, len , 1) ;
if(ans1 != 0)
ans = ans1 ;
if(ans2 != 0 && ans2 > ans1 )
ans = ans2 ;
ans = a[ans] ;
if(i != n)
printf("%d ",ans);
else
printf("%d\n",ans);
modify(p , cur++ , 1 , len , 1);
}
return 0;
}