/*
题意:给定一个n行m列的书架,每次有4种操作,1 x y 是如果(x, y)位置没有书,就在这个位置放一本书,
2 x y是如果(x , y)有书,就把这个位置的书拿走, 3 y 是把第y行空的位置放上书,有书的位置把书
拿走,4 k是回到第k次操作之后的状态,每个操作过后将书架上的书的总数输出
方法:采用离线处理,首先建图,对于第i次操作,如果不是类型4的话,就从i-1向i连一条边;如果是类型
4,且还原到的操作是第k次后,那么就从k向i连一条边。用一个二维数组模拟书架,然后dfs搜索上述的
的图,每次搜索到第i次的时候离线存下第i次操作的后结果ans[i],然后从1到m依次输出ans[i]即可
*/
#pragma warning(disable:4786)
#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<cmath>
#include<string>
#include<sstream>
#define LL long long
#define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;++i)
#define mem(a,x) memset(a,x,sizeof(a))
#define lson l,m,x<<1
#define rson m+1,r,x<<1|1
using namespace std;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
const double PI = acos(-1.0);
const double eps=1e-6;
const int maxn = 1e5 + 3;
const int maxs = 1e3 + 5 ;
vector<int>G[maxn];
int bookcase[maxs][maxs] , type[maxn] ; //type[i]:第i次操作的类型
int n , m , Q ;
struct node
{
int ax , ay , rx , ry ,inx;
}q[maxn]; //第i次操作:(ax,ay)位置加一个,(rx,ry)减一个,第inx行反转
int ans[maxn] ;
void dfs(int cur , int sum)
{
ans[cur] = sum ;
int len = G[cur].size();
for(int i = 0 ; i<len ; i++){
int nt = G[cur][i] , nsum ;
if(type[nt] == 1){
if(bookcase[ q[nt].ax ][ q[nt].ay ] != 0){
dfs( nt , sum ) ;
continue ;
}
nsum = sum + 1 ;
bookcase[ q[nt].ax ][ q[nt].ay ]++;
dfs(nt , nsum) ;
bookcase[ q[nt].ax ][ q[nt].ay ] -- ; //对于每种类型,都要记得进行回溯,所以把书架变回到操作之前的状态
}
else if(type[nt] == 2){
if(bookcase[ q[nt].rx ][ q[nt].ry ] == 0){
dfs(nt , sum) ;
continue ;
}
nsum = sum - 1 ;
bookcase[ q[nt].rx ][ q[nt].ry ]--;
dfs(nt , nsum) ;
bookcase[ q[nt].rx ][ q[nt].ry ] ++ ;
}
else if(type[nt] == 3){
int before = 0 , after = 0 ;
for(int i = 1 ; i<= m ; i++){
if(bookcase[ q[nt].inx ][i] == 0){
bookcase[ q[nt].inx ][i] = 1;
++after ;
}
else{
bookcase[ q[nt].inx ][i] = 0 ;
++before ;
}
}
nsum = sum + (after - before) ;
dfs(nt , nsum) ;
for(int i = 1 ; i<= m ; i++){
if(bookcase[ q[nt].inx ][i] == 0){
bookcase[ q[nt].inx ][i] = 1;
}
else{
bookcase[ q[nt].inx ][i] = 0 ;
}
}
}
else{
dfs( nt , sum ) ;
}
}
}
int main()
{
int Q;
scanf("%d%d%d",&n,&m,&Q);
mem(ans , 0) ;
mem(bookcase , 0) ;
for(int i = 1 ; i<=Q ; i++){
scanf("%d",&type[i]) ;
if(type[i] == 1){
scanf("%d%d",&q[i].ax , &q[i].ay) ;
}
else if(type[i] == 2){
scanf("%d%d",&q[i].rx , &q[i].ry) ;
}
else if(type[i] == 3){
scanf("%d",&q[i].inx) ;
}
else{
int k ;
scanf("%d",&k);
G[k].push_back(i) ;
}
if(type[i] != 4)
G[i - 1].push_back(i) ;
}
dfs( 0 ,0 ) ;
for(int i = 1 ; i<= Q ; i++){
printf("%d\n",ans[i]) ;
}
return 0;
}
codeforces 707D Persistent Bookcase 离线+深搜
最新推荐文章于 2022-07-08 01:48:41 发布