/*
题目描述:给出一棵树, 每个点有一个权值,一个合法的集合定义为:
一个连通的点集,其中最大权值与最小权值之差小于等于已知的常数d
思路:分别枚举每个点作为集合中的权值最大点时,对应的合法的集合有多少种,最后将每个点计算出来的数相加即可。
对于某个点root,满足root是集合中权值最大点这一条件的集合个数的计算方法是以root为根进行树上dp
dp[root] = (dp[son1]+1) * (dp[son2] + 1) * (dp[son3] + 1) * ...*(dp[son n] + 1)
其中,dp[i]的含义是当root为权值最大的点的时候,以i为根的子树中满足要求的集合的个数
收获:分类计数时分类的方式要灵活一些
*/
#pragma warning(disable:4786)
#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<cmath>
#include<string>
#include<sstream>
#define LL long long
#define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;++i)
#define mem(a,x) memset(a,x,sizeof(a))
#define lson l,m,x<<1
#define rson m+1,r,x<<1|1
using namespace std;
const LL INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
const double PI = acos(-1.0);
const double eps=1e-6;
const int maxn = 2005 ;
vector<int>G[maxn];
int val[maxn] ;
LL dp[maxn];
int n , d ,cur ;
void dfs(int root , int fa)
{
dp[root] = 1LL;
for(int i = 0 ; i<G[root].size();i++){
int nt = G[root][i];
if(nt == fa) continue;
if( val[nt] < val[cur] && val[cur] - val[nt] <= d)
dfs(nt , root);
else if(val[nt] == val[cur] && nt < cur)
dfs(nt , root);
dp[root] = (dp[root] * (dp[nt]+1LL) ) % mod;
}
}
int main()
{
int x , y;
scanf("%d%d", &d , &n);
for(int i = 1 ; i<= n ; i++)
scanf("%d",&val[i]);
for(int i = 1 ; i< n ; i++){
scanf("%d %d", &x , &y);
G[x].push_back(y);
G[y].push_back(x);
}
LL ans = 0;
for(int i = 1 ; i<= n ; i++){
cur = i;
mem(dp , 0);
dfs(i , -1);
ans = (ans + dp[i]) % mod;
}
printf("%d\n", ans);
return 0;
}
codeforces 486D Valid Sets 树形dp + 计数
最新推荐文章于 2019-04-16 14:38:48 发布