codeforces round 309 div1 Nudist Beach 二分+搜索

题目描述:给出一个有n(1<=n<=1e5)个点m(1<=m<=1e5)条边的无向图,其中有k个点为堡垒,现在要求占领除堡垒外的一些点作为我方据点,未被占领的点视为敌方据点,使得所有我方据点中

                                   相邻的我方据点数 / 相邻的敌方据点

最小的那个值最大,要求输出应该占领的据点编号


思路:二分这个比值的最小值,关键在于怎么判断是否能通过一定的占领方式满足这个比值。

           枚举每个非堡垒点,如果这个点的当前比值小于二分出的值,就放弃这个据点,同时更新与这个点关联的其他点,如果其他点的比值也小于二分出的值,那么也把这个点弃掉,再看与这个“其他点”关联的点受到的影响,以此方式进行dfs。最后判断一下,如果所有点都放弃占领了,说明这次二分出的比值不合理。

           关键是复杂度的判断,通过上面的方法,我们发现每个点会被访问一次(依次枚举点),而每条边最多会被访问两次(正向/反向各一次),所以整体的复杂度大概是O((n + 2 * m) * logn)


收获:1、当看到图论问题中有1e5个点,但是边数也不超过1e5的时候,可以考虑一下从边的角度做文章,比如这道题因为每边最多访问两次所以保证了复杂度的合理性

#pragma warning(disable:4786)
#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<cmath>
#include<string>
#include<sstream>
#include<bitset>
#define LL long long
#define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;++i)
#define mem(a,x) memset(a,x,sizeof(a))
#define lson l,m,x<<1
#define rson m+1,r,x<<1|1
using namespace std;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
const double PI = acos(-1.0);
const double eps=1e-10;
const int maxn = 1e5 + 5;
int black[maxn] , vis[maxn] ;
int n , m;
vector<int>G[maxn];
struct Node
{
    int x , y ;
    double rate;
}node[maxn] , temp[maxn];
vector<int>ans;
void dfs(int cur , double x)
{
    for(int i = 0 ; i < G[cur].size() ;i++){
        int nt = G[cur][i];
        if(black[nt] || vis[nt])       continue;
        ++temp[nt].x;
        temp[nt].rate = 1.00 * (temp[nt].y - temp[nt].x) / temp[nt].y;
        if(temp[nt].rate < x && fabs(temp[nt].rate - x) > eps){
            vis[nt] = 1;
            dfs(nt , x);
        }
    }
}
bool ok(double x)
{
    mem(vis , 0);
    for(int i = 1 ; i <= n; i++){
        temp[i] = node[i];
    }
    for(int i = 1 ; i <= n ; i++){
        if(vis[i] || black[i])        continue;
        if(temp[i].rate < x && fabs(temp[i].rate - x) > eps){
            vis[i] = 1;
            dfs(i , x);
        }
    }
    for(int i = 1 ; i <= n; i++){
        if(!black[i] && !vis[i])        return true;
    }
    return false;
}
void solve()
{
    double left = 0 , right = 1;
    for(int i = 0 ; i < 100 ; i++){
        double mid = 0.5 * (left + right);
        if(ok(mid)){
            ans.clear();
            for(int i = 1 ; i <= n ; ++i){
                if(!black[i] && !vis[i]){
                    ans.push_back(i);
                }
            }
            left = mid;
        }
        else{
            right = mid;
        }
    }
}
int main()
{
    int k , u , v;
    scanf("%d %d %d" , &n , &m , &k);
    for(int i = 0 ; i < k ; i++){
        scanf("%d" , &u);
        black[u] = 1;
    }
    for(int i = 0 ; i < m ; i++){
        scanf("%d %d" , &u , &v);
        G[u].push_back(v);
        G[v].push_back(u);
        ++node[u].y;        ++node[v].y;
        if(black[v])      ++node[u].x;
        if(black[u])      ++node[v].x;
    }
    for(int i = 1 ; i <= n ; i++){
        node[i].rate = 1.00 * (node[i].y - node[i].x) / node[i].y;
    }
    solve();
    int sz = ans.size();
    if(sz){
        printf("%d\n" , sz);
        for(int i = 0 ; i < sz ; i++){
            printf("%d " , ans[i]);
        }
        puts("");
    }
    else{
        puts("1");
        int ans = -1;
        for(int i = 1 ; i <= n ; i++){
            if(!black[i]){
                ans = i;    break;
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值