题目描述:给出一个有n(1<=n<=1e5)个点m(1<=m<=1e5)条边的无向图,其中有k个点为堡垒,现在要求占领除堡垒外的一些点作为我方据点,未被占领的点视为敌方据点,使得所有我方据点中
相邻的我方据点数 / 相邻的敌方据点
最小的那个值最大,要求输出应该占领的据点编号
思路:二分这个比值的最小值,关键在于怎么判断是否能通过一定的占领方式满足这个比值。
枚举每个非堡垒点,如果这个点的当前比值小于二分出的值,就放弃这个据点,同时更新与这个点关联的其他点,如果其他点的比值也小于二分出的值,那么也把这个点弃掉,再看与这个“其他点”关联的点受到的影响,以此方式进行dfs。最后判断一下,如果所有点都放弃占领了,说明这次二分出的比值不合理。
关键是复杂度的判断,通过上面的方法,我们发现每个点会被访问一次(依次枚举点),而每条边最多会被访问两次(正向/反向各一次),所以整体的复杂度大概是O((n + 2 * m) * logn)
收获:1、当看到图论问题中有1e5个点,但是边数也不超过1e5的时候,可以考虑一下从边的角度做文章,比如这道题因为每边最多访问两次所以保证了复杂度的合理性
#pragma warning(disable:4786)
#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<cmath>
#include<string>
#include<sstream>
#include<bitset>
#define LL long long
#define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;++i)
#define mem(a,x) memset(a,x,sizeof(a))
#define lson l,m,x<<1
#define rson m+1,r,x<<1|1
using namespace std;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
const double PI = acos(-1.0);
const double eps=1e-10;
const int maxn = 1e5 + 5;
int black[maxn] , vis[maxn] ;
int n , m;
vector<int>G[maxn];
struct Node
{
int x , y ;
double rate;
}node[maxn] , temp[maxn];
vector<int>ans;
void dfs(int cur , double x)
{
for(int i = 0 ; i < G[cur].size() ;i++){
int nt = G[cur][i];
if(black[nt] || vis[nt]) continue;
++temp[nt].x;
temp[nt].rate = 1.00 * (temp[nt].y - temp[nt].x) / temp[nt].y;
if(temp[nt].rate < x && fabs(temp[nt].rate - x) > eps){
vis[nt] = 1;
dfs(nt , x);
}
}
}
bool ok(double x)
{
mem(vis , 0);
for(int i = 1 ; i <= n; i++){
temp[i] = node[i];
}
for(int i = 1 ; i <= n ; i++){
if(vis[i] || black[i]) continue;
if(temp[i].rate < x && fabs(temp[i].rate - x) > eps){
vis[i] = 1;
dfs(i , x);
}
}
for(int i = 1 ; i <= n; i++){
if(!black[i] && !vis[i]) return true;
}
return false;
}
void solve()
{
double left = 0 , right = 1;
for(int i = 0 ; i < 100 ; i++){
double mid = 0.5 * (left + right);
if(ok(mid)){
ans.clear();
for(int i = 1 ; i <= n ; ++i){
if(!black[i] && !vis[i]){
ans.push_back(i);
}
}
left = mid;
}
else{
right = mid;
}
}
}
int main()
{
int k , u , v;
scanf("%d %d %d" , &n , &m , &k);
for(int i = 0 ; i < k ; i++){
scanf("%d" , &u);
black[u] = 1;
}
for(int i = 0 ; i < m ; i++){
scanf("%d %d" , &u , &v);
G[u].push_back(v);
G[v].push_back(u);
++node[u].y; ++node[v].y;
if(black[v]) ++node[u].x;
if(black[u]) ++node[v].x;
}
for(int i = 1 ; i <= n ; i++){
node[i].rate = 1.00 * (node[i].y - node[i].x) / node[i].y;
}
solve();
int sz = ans.size();
if(sz){
printf("%d\n" , sz);
for(int i = 0 ; i < sz ; i++){
printf("%d " , ans[i]);
}
puts("");
}
else{
puts("1");
int ans = -1;
for(int i = 1 ; i <= n ; i++){
if(!black[i]){
ans = i; break;
}
}
printf("%d\n",ans);
}
return 0;
}