内容简介
这本书是深度学习领域的入门教材,系统地讲解了深度学习的知识体系,由浅入深阐述了深度学习基础知识、主要模型及部分前沿研究热点。冀使读者能有效地掌握相关知识,具备用深度学习技术解决大数据问题的能力。
全书共 15 章。第1 章绪论,介绍人工智能、机器学习、深度学习的概要。第2、3章介绍了机器学习的基础知识。第4、5、6章分别讲述三种主要的神经网络模型:前馈神经网络、卷积神经网络和循环神经网络。第7章介绍神经网络的优化与正则化方法。第8章介绍神经网络中的注意力机制和外部记忆。第9章简要介绍了一些无监督学习方法。第10章中介绍一些和模型独立的机器学习方法:集成学习、协同学习、自学习、多任务学习、迁移学习、终身学习、小样本学习、元学习等。第11章介绍了概率图模型的基本概念。第12章介绍两种早期的深度学习模型:玻尔兹曼机和深度信念网络。第13章介绍深度生成模型:变分自编码器和对抗生成网络。第14章介绍了深度强化学习的知识。第15章介绍了应用十分广泛的序列生成模型。
作者简介
邱锡鹏
复旦大学计算机科学技术学院教授、博士生导师,于复旦大学获得理学学士和博士学位。主要研究领域包括自然语言处理、机器学习、深度学习等,在相关领域的权威国际期刊、会议上发表学术论文60余篇,获得计算语言学顶级国际会议ACL 2017杰出论文奖、全国计算语言学会议CCL 2019最佳论文奖,2015年入选首届中国科协青年人才托举工程,2018年获得中国中文信息学会“钱伟长中文信息处理科学技术奖青年创新一等奖”,入选由“清华—中国工程院知识智能联合研究中心和清华大学人工智能研究院”联合发布的2020年人工智能(AI)全球最具影响力学者提名。该排名参考过去十年人工智能各子领域最有影响力的会议和期刊发表论文的引用情况,排名前10的学者当选该领域当年最具影响力学者奖,排名前100的其他学者获最具影响力学者提名奖。作为项目负责人开源发布了两个自然语言处理开源系统FudanNLP和FastNLP,获得了学术界和产业界的广泛使用。目前担任中国中文信息学会青年工作委员会执行委员、计算语言学专委会委员、语言与知识计算专委会委员,中国人工智能学会青年工作委员会常务委员、自然语言理解专委会委员。