Python Http服务 如果因为某种需求急需一个web服务器,而又不至于去在httpd和nginx中配置一个新的虚拟主机,Python或许可以帮上这个临时的小需求。 使用Python可以完成一个简单的内建 HTTP 服务器。把需要共享的目录或者文件都以HTTP的方式展示出来。python -m http.server 8000获取该服务下的文件:...
完美解决apex安装报错:error: command ‘gcc‘ failed with exit status 1 Running setup.py install for apex error 最近在跑swin-transformer,安装apex是出现以下错误:原因是gcc版本太低:目前的gcc版本是4.9.4解决方法,先安装较高版本的gcc,这里以安装5.2.0为例(我是在centos7下以root用户安装的,普通用户需要权限)。cd /usr/local/src# 下载gcc5.2.0源码wget http://ftp.gnu.org/gnu/gcc/gcc-5.2.0/gcc-5.2.0.tar.bz2tar -jxvf gcc-5.2.0.tar.bz2# 进入gcc目
opencv处理图片批量添加噪声、以及光照、黑暗处理 import osimport cv2import numpy as npimport randomdef imgBrightness(img1, c, b): h, w, ch = img1.shape blank = np.zeros([h, w, ch], img1.dtype) rst = cv2.addWeighted(img1, c, blank, 1-c, b) return rst# 变暗def darker(image, percetage=0.
CosineAnnealingLR 记录一下CosineAnnealingLR调整学习率这种策略:import torchimport torch.nn as nnfrom torch.optim.lr_scheduler import CosineAnnealingLRimport itertoolsimport matplotlib.pyplot as pltinitial_lr = 0.1class model(nn.Module): def __init__(self): super().
nohup命令提交任务至服务器后台运行 以跑深度学习为例,这里简化了命令的参数:nohup 命令 >output 2>&1 &例子nohup python train.py > out.log 2>&1 &结果:watch -n 1 nvidia-smi可看到程序正在运行,断掉远程连接,实验室断掉电源,回去睡觉!如果想看看程序的运行结果怎么看呢?注意到命令里的“out.log”,原本程序打印到屏幕上的内容会自动动态输入到此文件里,直接查看此文件即可:...
Linux的scp命令-服务器之间远程拷贝文件 scp是 secure copy的缩写, scp是linux系统下基于ssh登陆进行安全的远程文件拷贝命令。linux的scp命令可以在linux服务器之间复制文件和目录。
Global Attention Mechanism: Retain Information to Enhance Channel-Spatial Interactions(GAM) 本文提出了一种通过减少信息弥散和放大全局交互表示来提高深度神经网络性能的全局注意力机制。本文引入了3D-permutation 与多层感知器的通道注意力和卷积空间注意力子模块。在CIFAR-100和ImageNet-1K上对所提出的图像分类机制的评估表明,本文的方法稳定地优于最近的几个注意力机制,包括ResNet和轻量级的MobileNet。
AttributeError: ‘_IncompatibleKeys‘ object has no attribute ‘cuda‘ elif model_type == 'swin_mlp': model = SwinMLP(img_size=config.DATA.IMG_SIZE, patch_size=config.MODEL.SWIN_MLP.PATCH_SIZE, in_chans=config.MODEL.SWIN_MLP.IN_CHANS, num_clas...
torch.backends.cudnn.benchmark = True==cudnn安装成功? 设置 torch.backends.cudnn.benchmark=True 将会让程序在开始时花费一点额外时间,为整个网络的每个卷积层搜索最适合它的卷积实现算法,进而实现网络的加速.
Pyramid Squeeze Attention 地址:import numpy as npimport torchfrom torch import nnfrom torch.nn import initclass PSA(nn.Module): def __init__(self, channel=512,reduction=4,S=4): super().__init__() self.S=S self.convs=[] for i in range(S):..
ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks---CVPR2020 这是CVPR2020的一篇文章。地址:如上图所示,SE实现通道注意力是使用两个全连接层,而ECA是需要一个的卷积。作者这么做的原因一方面是认为计算所有通道两两之间的注意力是没有必要的,另一方面是用两个全连接层确实引入了太多的参数和计算量。因此作者进行了AvgPool之后,只是使用了一个感受野为k的一维卷积(相当于只计算与相邻k个通道的注意力),这样做就大大的减少的参数和计算量。(i.e.相当于SE是一个global的注意力,而ECA是一个local的注意力)import numpy as npi.
SKAttention:Selective Kernel Networks---CVPR2019 这是CVPR2019的一篇文章,致敬了SENet的思想。在传统的CNN中每一个卷积层都是用相同大小的卷积核,限制了模型的表达能力;而Inception这种“更宽”的模型结构也验证了,用多个不同的卷积核进行学习确实可以提升模型的表达能力。作者借鉴了SENet的思想,通过动态计算每个卷积核得到通道的权重,动态的将各个卷积核的结果进行融合。个人认为,之所以所这篇文章也能够称之为lightweight,是因为对不同kernel的特征进行通道注意力的时候是参数共享的(i.e. 因为在做Attention之前,首先将
通道注意力:Squeeze-and-Excitation(SE) Attention 这是CVPR2018的一篇文章,同样非常具有影响力,目前引用量7k+。本文是做通道注意力的,因其简单的结构和有效性,将通道注意力掀起了一波小高潮。大道至简,这篇文章的思想可以说非常简单,首先将spatial维度进行AdaptiveAvgPool,然后通过两个FC学习到通道注意力,并用Sigmoid进行归一化得到Channel Attention Map,最后将Channel Attention Map与原特征相乘,就得到了加权后的特征。
BAM: Bottleneck Attention Module---BMCV2018 Brief introduction:这是CBAM同作者同时期的工作,工作与CBAM非常相似,也是双重Attention,不同的是CBAM是将两个attention的结果串联;而BAM是直接将两个attention矩阵进行相加。Channel Attention方面,与SE的结构基本一样。Spatial Attention方面,还是在通道维度进行pool,然后用了两次3x3的空洞卷积,最后将用一次1x1的卷积得到Spatial Attention的矩阵。最后Channel Attention和Spat
CBAM: Convolutional Block Attention Module import numpy as npimport torchfrom torch import nnfrom torch.nn import initclass ChannelAttention(nn.Module): def __init__(self,channel,reduction=16): super().__init__() self.maxpool=nn.AdaptiveMaxPool2d(1) self.avgpool=nn.
python集合运算 问题动机;在上传Imagenet数据集时,发现仅仅上传了998个压缩包,漏掉了两个…难道要重新上传嘛??NO、NO、NO,下面介绍如何通过python的集合运算来得到哪两个压缩包漏传了。首先获取已经上传的998个压缩包的文件名:服务器端操作:import osls_linux=os.listdirs("./")set_linux=set(ls_linux)set_linux即可得到已经上传到服务器里的998类压缩包。然后复制结果到本地电脑上,赋值给一个新的集合set_linux。本地
运行.sh文件报错-bash: ./download_weights.sh: Permission denied 运行.sh文件:./weights/download_weights.sh[Errno 13] Permission denied: './weights/download_weights.sh’然后又用root登录,发现还是同样的错误,于是可以确定是文件权限的问题了。赋予download_weights.sh可执行的权限。chmod u+x /weights/download_weights.sh然后查看一下;再次执行:可以运行!...
SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks论文阅读 本文提出一种概念简单且非常有效的注意力模块。不同于现有的通道/空域注意力模块,该模块无需额外参数为特征图推导出3D注意力权值。具体来说,本文基于著名的神经科学理论提出优化能量函数以挖掘神经元的重要性。本文进一步针对该能量函数推导出一种快速解析解并表明:该解析解仅需不超过10行代码即可实现。该模块的另一个优势在于:大部分操作均基于所定义的能量函数选择,避免了过多的结构调整。最后,本文在不同的任务上对所提注意力模块的有效性、灵活性进行验证。
Feature Boosting, Suppression, and Diversification for Fine-Grained Visual Classification论文阅读与复现 这是一篇2021年放在arxiv上面的一篇关于细粒度识别的文章,提出了两个新颖的模块,称之为:FBSM特征增强和抑制模块,FDM特征融合模块。经验证、效果显著!论文地址:https://arxiv.org/abs/2103.02782Github地址:https://github.com/chaomaer/FBSD机构:National Key Laboratory for Novel Software TechnologyNanjing University, Nanjing 210023,