利用单调栈思路解决递增关系数据问题

一、题目描述

在对数据进行排序的过程中,通常采用取1个数作为主元,通过比较交换,把比主元小的数挪到它左边;把比主元大的元素挪到右边。现给定一个划分后的正整数序列,请问有多少个元素可能是排序过程中选中的主元?并按顺序输出这些值。
举例
[1,3,2,4,5]
输出
[1,4,5]

二、解题思路

思路1:

通过暴力解法,分别比较每个数的左边和右边值,如果当前值大于左边值且当前值小于右边值,则保存此值到列表中,最后对列表排序输出。

思路2:

由于满足主元的条件:其右边值一定大于它,其左边值一定小于它,相当于有一个隐藏的递增关系,可以考虑单调栈,此解法更加高效。单调栈算法思路题

三、代码实现

1:暴力法

   // 暴力法,先比较左边的最大值,再比较右边的最大值,如果当前值比左边大,比右边小,则满足
    public static int[] majorityNumber2(int[] nums) {
   
        List<Integer> list = new ArrayList<>();
        for (int i = 0; i < nums.length; i++) {
   
            boolean left = checkLeft(0, i, nums[i], nums);
            boolean right = checkRight(i + 1, nums.length, nums[i], nums);
            if (left && right) {
   
                list.add(nums[i]);
            }
        }

        int[] array = list
<think>嗯,用户想了解单调栈的实现和应用场景。从引用资料来看,之前已经提供了相关说明,但用户可能希望更系统化的总结。用户可能是算法学习者,正在准备面试或刷题,需要清晰且可直接应用的实例。注意到引用[1][2][3]都强调了单调栈的核心特点:保持栈内元素单调性,用于高效查找邻近更大/更小元素。引用[4][5]给出了经典题目(柱状图最大矩形)的代码实现,这些可以拆解说明。实现部分要突出三点:单调性维护(递增/递减栈)、出栈操作的含义(当前元素触发计算)、存储索引而非值的原因(方便计算边界)。应用场景需要区分典型问题类型:边界搜索、面积优化、跨度计算。用户可能特别关注“为什么用栈而不用其他结构”——需要解释后进先出特性与“最近邻”问题的适配性。代码示例选用C++和Python双版本,因为引用[4]是C++而用户历史问题含Python代码。注意在解释部分变量时保持一致性(如stk数组的top指针)。性能要明确O(n)的原因,避免用户误解退化情况。用户没提语言偏好,但上次回复含Python代码,所以优先Python示例。应用场景补充“矩阵最大矩形”的转化思路(引用[4]标题提到),这是单调栈的进阶用法,能展示该算法的扩展性。</think> 单调栈是一种特殊的数据结构,其核心在于**维护栈内元素的单调性**(单调递增或递减)。它能够高效解决一系列需查找元素“邻近边界”的问题,以下从实现和应用场景两方面详细说明: --- ### **一、单调栈实现** #### **核心思路** 1. **遍历顺序**:通常从左到右遍历数组 2. **栈内维护**:保持栈底到栈顶的单调性(增/减) 3. **出栈条件**:当新元素破坏单调性时,弹出栈顶元素并计算相关解 #### **代码示例(Python)** ```python def monotonic_stack(nums): stack = [] # 存储数组索引(通常比存值更灵活) res = [-1] * len(nums) # 初始化结果数组(例如存右侧第一个更大元素) for i in range(len(nums)): # 当栈非空且当前元素 > 栈顶元素(递减栈则用 <) while stack and nums[i] > nums[stack[-1]]: idx = stack.pop() # 弹出栈顶索引 res[idx] = nums[i] # 当前元素即为栈顶元素的"右侧更大元素" stack.append(i) # 当前元素索引入栈 return res # 示例:输入 [3, 1, 4, 2] # 输出: [4, 4, -1, -1] 表示:3右侧第一个大的是4,1右侧第一个大的是4,4和2右侧无更大元素 ``` #### **关键点** - **时间复杂为 $O(n)$**:每个元素最多入栈、出栈一次 - **栈中存储索引**:便于计算距离、区间宽度等 - **单调性选择**: - **递减栈**:找右侧第一个更大元素 - **递增栈**:找右侧第一个更小元素(如柱状图最大矩形) --- ### **二、经典应用场景** #### **1. 边界查找问题** - **下一个更大/小元素**(Next Greater Element) - 例:`[2,1,2,4,3]` → 下一个更大元素 `[4,2,4,-1,-1]` [^1][^5] - **左侧第一个更大/小元素**(类似反向遍历) #### **2. 面积优化问题** - **柱状图中最大矩形**(LeetCode 84)[^4] - **核心代码片段**(递增栈计算宽度): ```python stack = [-1] # 哨兵节点 max_area = 0 for i in range(len(heights)): while stack[-1] != -1 and heights[stack[-1]] > heights[i]: h = heights[stack.pop()] w = i - stack[-1] - 1 # 宽度 = 当前索引 - 新栈顶索引 - 1 max_area = max(max_area, h * w) stack.append(i) ``` - **最大矩形(01矩阵)**(LeetCode 85)[^4] - 转化为逐行的柱状图问题 #### **3. 跨度计算问题** - **每日温度**(LeetCode 739)[^5] - 求等待更暖天数的间隔:`[73,74,75,71,69,76]` → `[1,1,4,2,1,0]` - 解法:递减栈记录温度下标,出栈时计算天数差 #### **4. 删除重复字母(字典序最小)** - **关键点**:维护递增栈,处理字符最后出现位置 [^2] --- ### **单调栈适用条件** - 问题需找到**某一侧最近的边界元素**(更大/更小) - 计算过程需要**利用弹出元素的中间结果**(如面积、距离) - 数组遍历方向与边界查找方向一致(左→右找右边界,右→左找左边界) > 注:实际应用中,80% 单调栈问题可归结为以上场景。理解“单调性维护”和“边界触发计算”两个核心即可快速识别解法[^3][^5]。 --- **
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值