题意:给你一个数n,问你在n的范围内,找出两个整数a,b,使ab的最小公倍数是n,并且要求max(a,b)最小化。
思路:如果要满足a和b的最小公倍数是n的话,那么a和b一定是互质的(因为如果不是互质的话也可以通过提出公共的因子变成互质的而且结果不变),例如n是12 ,可以有4 6和 3 4 ,因为6包含了4包含的因子2,那么可以约去变成3 ,最后也是两个质数。
,所以a*b==n(两个数的最小公倍数等于a*b/最大公约数(a,b)==n),因为互质,所以公约数是1,所以a*b也是1。
那么就可以从1到sqrt(n)遍历第一个因子,如果越大公约数是1的话就判断能不能更新答案,最后输出最小的情况就ok啦;
代码:
/**
* ┏┓ ┏┓+ +
* ┏┛┻━━━┛┻┓ + +
* ┃ ┃
* ┃ ━ ┃ ++ + + +
* ████━████+
* ◥██◤ ◥██◤ +
* ┃ ┻ ┃
* ┃ ┃ + +
* ┗━┓ ┏━┛
* ┃ ┃ + + + +Code is far away from
* ┃ ┃ + bug with the animal protecting
* ┃ ┗━━━┓ 神兽保佑,代码无bug
* ┃ ┣┓
* ┃ ┏┛
* ┗┓┓┏━┳┓┏┛ + + + +
* ┃┫┫ ┃┫┫
* ┗┻┛ ┗┻┛+ + + +
*/
#include<cstdio>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <string>
#include <math.h>
#include<vector>
#include<queue>
#include<map>
#define sc_int(x) scanf("%d", &x)
#define sc_ll(x) scanf("%lld", &x)
#define pr_ll(x) printf("%lld", x)
#define pr_ll_n(x) printf("%lld\n", x)
#define pr_int_n(x) printf("%d\n", x)
#define ll long long
using namespace std;
const int N=1000000+100;
ll n ,m,h;
ll s[N];
int main()
{
int t;
sc_ll(n);
ll max1=1e12,max2=1e12;
for(ll i =1;i<=n/i;i++)
{
if(n%i==0)
if(__gcd(n/i,i)==1)
{
if(max(n/i,i)<=max(max1,max2))
{
max1=min(n/i,i);
max2=max(n/i,i);
}
}
}
cout<<max1<<" "<<max2<<endl;
return 0;
}