【HDU - 6558】The Moon(概率dp)

文章介绍了初学者如何理解并应用概率动态规划(DP)解决一个问题,特别是涉及中奖率的情况。文中通过一个例子展示了概率DP的解题过程,包括题意解析、思路阐述、代码实现,并总结了学习概率DP的体会,鼓励遇到未知问题时主动学习。
摘要由CSDN通过智能技术生成

ps:初学概率dp,所以 就算是板子也 是看了非常久,好在最后还是学会了qwq…


题意

在这里插入图片描述

思路

概率dp通常为从能够得到的状态去进行转移,在q为100%的时候,我们能够知道赢的概率为 p,那么赢的期望就是1/p,
那么往前转移状态,设dp[i]为机会率为i的时候的期望,那么
机会率为i时,一共有三种情况:

1.玩家赢了并且中奖了
2.玩家赢了但是没中奖
3.玩家没赢

对应的三种概率为

1.pq
2.p
(1-q)
3.(1-p)

因为玩家赢了并且中奖了是直接结束游戏没有后续的状态,所以对于机会率为i的时候
赢的期望=1(这一把赢了并且中奖了)+p*(1-q)*dp[q+2](玩家赢了但是没中奖) +(1-p)*dp[q+1.5](玩家没赢) ;
但是因为1.5是小数,所以对于dp[i]扩大两倍即可(最后记得用浮点运算)。

代码


#include<cstdio>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <string>
#include <math.h>
#include<vector>
#include<queue>
#include<map>
#define sc_int(x) scanf("%d", &x)
#define sc_ll(x) scanf("%lld", &x)
#define pr_ll(x) printf("%lld", x)
#define pr_ll_n(x) printf("%lld\n", x)
#define pr_int_n(x) printf("%d\n", x)
#define ll long long 
using namespace std;

const int N=1000000+100;
int n ,m,h;
int s[N];

double dp[N];


void slove( int t )
{

	double p;
	cin>>p;//中奖率
	p/=100;
	memset(dp,0,sizeof dp);
	dp[200]=1/p;//赢的机会为100的时候
	for(int i =199;i>=4;i--)
	dp[i]=1.0 + 1.0*(1-p)*dp[min(200,i+3)] +  1.0*p*(1-i*1.0/200)*dp[min(200,i+4)];

	printf("Case %d: %.10lf\n",t,dp[4]);

}

int main()
{
	int t;
	sc_int(t);
	for(int i =1;i<=t;i++)
	slove(i);


	return 0;
}

总结

因为dp没见过概率dp的题,所以初见的时候感觉很不知所措,以后就尽量看到不会的就去学学吧~

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值