代码随想录算法训练营| 动态规划 | 509. 斐波那契数 70. 爬楼梯 746. 使用最小花费爬楼梯

文章通过讲解斐波那契数列和爬楼梯问题,展示了如何使用动态规划来解决这类问题。对于斐波那契数,解释了如何避免使用整个数组,只需维护三个数即可。在爬楼梯问题中,强调了初始化dp数组的重要性,并给出了不同问题的递推公式。在最小花费爬楼梯问题中,注意了起始台阶的选择对初始dp值的影响。
摘要由CSDN通过智能技术生成

509. 斐波那契数

题目链接

(1)文字讲解:https://programmercarl.com/0509.%E6%96%90%E6%B3%A2%E9%82%A3%E5%A5%91%E6%95%B0.html
(2)视频讲解:https://www.bilibili.com/video/BV13Q4y197Wg
(3)题目链接:https://leetcode.cn/problems/fibonacci-number/

看到代码随想录之前的想法

其实没有想过是动态规划,因为题目的意思描述的非常明确,只要开一个数组然后按照他的规律就可以计算了。

看到代码随想录之后的想法

视频最后还提到其实不需要维护一整个数组,只维护三个数也可以。

本题难点

无。

代码

class Solution {
public:
    int fib(int n) {
        if(n <= 1){
            return n;
        }
        vector<int> dp(n+1);
        dp[0] = 0;
        dp[1] = 1;
        for(int i = 2; i <= n; i++){
            dp[i] = dp[i-1] + dp[i-2];
        }
        return dp[n];
    }
};

维护三个数的:

class Solution {
public:
    int fib(int n) {
        if(n <= 1){
            return n;
        }
        // vector<int> dp(n+1);
        // dp[0] = 0;
        // dp[1] = 1;
        int num1 = 0;
        int num2 = 1;
        int sum = 0;
        for(int i = 2; i <= n; i++){
            // dp[i] = dp[i-1] + dp[i-2];
            sum = num1 + num2;
            num1 = num2;
            num2 = sum;
        }
        // return dp[n];
        return sum;
    }
};

70. 爬楼梯

题目链接

(1)文字讲解:https://programmercarl.com/0070.%E7%88%AC%E6%A5%BC%E6%A2%AF.html#%E6%80%9D%E8%B7%AF
(2)视频讲解:https://www.bilibili.com/video/BV17h411h7UH
(3)题目链接:https://leetcode.cn/problems/climbing-stairs/

看到代码随想录之前的想法

这个题之前做过,所以知道递推公式是dp[i-1]+dp[i-2]。不过也很好理解,dp[i]的含义是第i节楼梯总共的走法,那么能到这一节楼梯的位置一定是前一节(跨一步),或者是前两节(跨两步)。

看到代码随想录之后的想法

同上。

本题难点

在文字讲解里面比较需要注意的是初始化dp数组这一段,我觉得讲的很好。dp[2] = 2, 如果dp[0] = 0、dp[1] = 1,那么按照定义其实dp[2] = 1了,这就不对了!不用钻牛角尖想,也不用去为了适配dp[2] = 2强行说服自己dp[0] = 1,题目中说了n是一个正整数,题目根本就没说n有为0的情况。所以本题其实就不应该讨论dp[0]的初始化。

代码

class Solution {
public:
    int climbStairs(int n) {
        if(n == 1) return n;
        vector<int> dp(n+1);
        dp[1] = 1;
        dp[2] = 2;
        for(int i = 3; i <= n; i++){
            dp[i] = dp[i-1] + dp[i-2];
        }
        return dp[n];
    }
};

746. 使用最小花费爬楼梯

题目链接

(1)文字讲解:https://programmercarl.com/0746.%E4%BD%BF%E7%94%A8%E6%9C%80%E5%B0%8F%E8%8A%B1%E8%B4%B9%E7%88%AC%E6%A5%BC%E6%A2%AF.html
(2)视频讲解:https://www.bilibili.com/video/BV16G411c7yZ
(3)题目链接:https://leetcode.cn/problems/min-cost-climbing-stairs/

看到代码随想录之前的想法

这个像是上一道题的加强版,只不过现在走每一步需要有花费,所以dp[i]的含义变成了走到i花费了多少,其他的走两步和走一步和上一题是一样的,很容易想到递推公式是:dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2]) 。

看到代码随想录之后的想法

本题的初始化需要注意一下,题目刻意强调了你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯,所以其实dp[0] = 0、dp[1] = 0。

本题难点

初始化需要注意赋值。

代码

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        vector<int> dp(cost.size()+1);
        dp[0] = 0;
        dp[1] = 0;
        for(int i = 2; i <= cost.size(); i++){
            dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2]);
        }
        return dp[cost.size()];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值