数学建模常用模型 规划问题

线性规划

线性规划用于最优化问题。最优化是企业运作、科技研发和工程设计中常见的问题要表述一个最优化问题(即建立数学模型),应明确三样东西:决策变量、约束条件和目标函数。

决策变量:它们是决策者(你)所控制的那些数量,它们取什么数值需要决策者来决策,最优化问题的求解就是找出决策变量的最优取值。
约束条件:它们是决策变量在现实世界中所受到的限制,或者说决策变量在这些限制范围之内取值才有实际意义。
目标函数:它代表决策者希望对其进行优化的那个指标。目标函数是决策变量的函数。

常用问题:

如最优人员安排,最优全局供应链等,下面引入一个最优生产问题。

列出方程:

MATLAB求解:

可以得出当甲生产8件,乙生产6件时,得到利润最大

LINGO求解:

可以看出两种方式得到的情况完全一样。 

非线性规划 

非线性规划与线性规划的求解基本一样

LINGO


Model:
max=98*x1+277*x2-x1*x1-0.3*x1*x2-2*x2*x2;
x1+x2<100;
x1<=2*x2;
@gin(x1);%取整
@gin(x2);
end

01 规划:

01规划是指未知量的取值范围只能是0,1的规划问题,通常是线性规划 

可以看到每人只能做一件事,每日只能做一件,从中找最小完成的工作数。那么就可以用到01规划了,0代表不做这件事,1代表做这件事。那么引入这16个变量就可以使用MATLAB或LINGO进行求解,而LINGO求解线性规划问题是十分方便的,那么就使用LINGO进行求解

Min=8*x11+13*x12+18*x13+23*x14+10*x21+14*x22+16*x23+27*x24+2*x31+10*x32+21*x33+26*x34+14*x41+22*x42+26*x43+28*x44;
x11+x12+x13+x14=1;
x21+x22+x23+x24=1;
x31+x32+x33+x34=1;
x41+x42+x43+x44=1;
x11+x21+x31+x41=1;
x12+x22+x32+x42=1;
x13+x23+x33+x43=1;
x14+x24+x34+x44=1;
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值