MapReduce案例9——多个数字文件的数据排序并添加序号(添加可并行方法)

本文介绍了如何使用MapReduce处理多个无序数字文件的排序问题,同时在数字前添加序号。首先利用MapReduce的默认排序功能,通过全局计数变量和比较上个值来设置索引。当文件较大时,采用多Reduce任务以减轻输出压力。总结中提到,对于小规模数据,可以直接使用MapReduce,而大数据场景下,采用并行处理的方式更为合适,关键在于管理和记录已排序文件的元素数量和索引起点。
摘要由CSDN通过智能技术生成
题目:
数字排序并加序号源数据:
2
32
654
32
15
756
65223
5956
22
650
92
26
54
6


最张结果:
1  2
2  6
3  15
4  22
5  26
6  32
7  32
8  54
9  92
10 650
11 654
12 756
13 5956
14 65223


一定要考虑 当数据量一大的时候, 你的实现思路能否使用。

解题思路:当有多个无序文件需要进行排序,并且在数字前面加入索引,首先考虑使用MapReduce的默认排序方法,在map里面进行排序,然后设置全局计数变量记录索引值,通过设置全局临时变量记录上个值的大小,如果当前值大于临时值,计数变量加1,否则不变,然后进行输出

代码如下:

/**
 * @author: lpj   
 * @date: 2018年3月16日 下午7:16:47
 * @Description:
 */
package lpj.reduceWork;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
 *
 */
import org.apache.hadoop.security.token.Token.PrivateToken;
public class BigNumFileSortMR {
	private static int countnum = 0;
	private static int temNum = 0;
	public static void main(String[] args) throws Exception {
		Configuration conf = new Configuration();
//		conf.addResource("hdfs-site.xml");//使用配置文件
//		System.setProperty("HADOOP_USER_NAME", "hadoop");//使用集群
		FileSystem fs = FileSystem.get(conf);//默认使用本地
		
		Job job = Job.getInstance(conf);
		job.setJarByClass(BigNumFileSortMR.class);
		job.setMapperClass(BigNumFileSortMR_Mapper.class);
		job.setReducerClass(BigNumFileSortMR_Reducer.class);
		
		job.setMapOutputKeyClass(IntWritable.class);
		job.setMapOutputValueClass(NullWritable.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(NullWritable.class);
		
		Path inputPath = new Path("d:/a/homework9/input/");//读入多个文件
		Path outputPath = new Path("d:/a/homework9/output/");//输出一个文件
		if (fs.exists(inputPath)) {
			fs.delete(outputPath, true);
		}
		
		FileInputFormat.setInputPaths(job, inputPath);
		FileOutputFormat.setOutputPath(job, outputPath);
		boolean isdone = job.waitForCompletion(true);
		System.exit(isdone ? 0 : 1);
	}
	
	public static class BigNumFileSortMR_Mapper extends Mapper<LongWritable, Text, IntWritable, NullWritable>{
		Text kout = new Text();
		Text valueout = new Text();
		@Override
		protected void map(LongWritable key, Text value,Context context)throws IOException, InterruptedException {
			int num = Integer.parseInt(value.toString());
			context.write(new IntWritable(num), NullWritable.get());
			
		}
	}
	public static class BigNumFileS
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值