MapReduce案例11——影评分析2(三表联合查询)

该博客介绍了如何使用MapReduce进行三表联合查询,以完成影评分析。在用户表和电影表数据量较小的情况下,通过MapJoin连接三个表,并针对男性和女性用户分别求取评分最高的10部电影。文章详细阐述了评分计算的逻辑,即总评分除以评分人数,并展示了MapReduce作业的实现过程,包括分组、排序和结果输出。在总结中,作者指出单个评分可能对电影总评分造成影响,建议考虑评分人数作为排序的附加因素。
摘要由CSDN通过智能技术生成

题目要求:(MapReduce案例11——影评分析1)为基础

现有如此三份数据:
1、users.dat    数据格式为:  2::M::56::16::70072
对应字段为:UserID BigInt, Gender String, Age Int, Occupation String, Zipcode String
对应字段中文解释:用户id,性别,年龄,职业,邮政编码

2、movies.dat		数据格式为: 2::Jumanji (1995)::Adventure|Children's|Fantasy
对应字段为:MovieID BigInt, Title String, Genres String
对应字段中文解释:电影ID,电影名字,电影类型

3、ratings.dat		数据格式为:  1::1193::5::978300760
对应字段为:UserID BigInt, MovieID BigInt, Rating Double, Timestamped String
对应字段中文解释:用户ID,电影ID,评分,评分时间戳

用户ID,电影ID,评分,评分时间戳,性别,年龄,职业,邮政编码,电影名字,电影类型
userid, movieId, rate, ts, gender, age, occupation, zipcode, movieName, movieType
(2)分别求男性,女性当中评分最高的10部电影(性别,电影名,评分)

根据题目要求,数据在不同的三个表中,其中用户表和电影表数据量较小,可以将两个表加载到内存,然后通过mapjoin将三个表进行连接,业务实现与影评分析1中一致,是求topN的问题

首先进行三表联合,作为数据基础

/**
 * @author: lpj   
 * @date: 2018年3月16日 下午7:16:47
 * @Description:
 */
package lpj.filmCritic;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.util.HashMap;
import java.util.Map;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
 *
 */
public class MapjoinThreeTables {
	
	public static void main(String[] args) throws Exception {
		Configuration conf = new Configuration();
		conf.set("fs.defaultFS", "hdfs://hadoop02:9000");
		System.setProperty("HADOOP_USER_NAME", "hadoop");//使用集群
		FileSystem fs = FileSystem.get(conf);
		
		Job job = Job.getInstance(conf);
		job.setJarByClass(MapjoinThreeTables.class);
		job.setMapperClass(MapjoinThreeTables_Mapper.class);
		
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(NullWritable.class);
		job.setNumReduceTasks(0);
		String inputpath = args[0];
		String outpath = args[1];
		//两个小文件地址
		URI uri1 = new URI(args[2]);
		URI uri2 = new URI(args[3]);
		job.addCacheFile(uri1);//不能漏掉!!!
		job.addCacheFile(uri2);
		Path inputPath = new Path(inputpath);
		Path outputPath = new Path(outpath);
		if (fs.exists(outputPath)) {
			fs.delete(outputPath, true);
		}
		
		FileInputFormat.setInputPaths(job, inputPath);
		FileOutputFormat.setOutputPath(job, outputPath);
		boolean isdone = job.waitForCompletion(true);
		System.exit(isdone ? 0 : 1);
	}
	
	public static class MapjoinThreeTables_Mapper extends Mapper<LongWritable, Text, Text, NullWritable>{
		private static Map<String, String> moivemap = new HashMap<>();
		private static Map<String, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值