Spark性能优化指南学习(二)——spark运行流程及资源调优

结合官网以及两篇高质量博客学习Spark性能调优,摘要几点加深理解

原文:

Spark性能优化指南——基础篇

Spark性能优化指南——高级篇

官方文档

了解资源调优,需要首先知道spark的运行流程,要了解运行流程需要了解一些相关概念

1、Spark相关概念

宽依赖和窄依赖

rdd具有依赖性

在RDD中将依赖分为了两种类型:窄依赖和宽依赖。

窄依赖:指父RDD的每个分区都只被子RDD的一个分区所依赖。

宽依赖:指父RDD的分区被子RDD的多个子分区所依赖。

一般来说shuffle阶段为宽依赖,非shuffle阶段为窄依赖,具体情况根据定义进行划分

Application

指的是我们开发的spark应用程序。我们开发好代码以后去提交任务这就是一个application

Deploymode

Client:在哪儿提交代码哪台服务器就是Driver 

cluster:会把Dirver发送到集群的不同机器上。

Executor

我们的任务是需要运行在Executor里面的

Job

我们提交的一个application里面可以有多个job一个application里面每遇到一个action的操作就会生成一个job

Stage

我们一个job任务的执行时需要分阶段的。

Task

最小的代码执行的逻辑单元

Application ->Job -> Stage -> Task

提交的整个spark任务为一个application,根据任务里面的action算子可以将application划分为多个job,每个job按照宽依赖划分为多个stage,每个stage按照处理数据不同(默认numslice数目)划分为不同的task


上图为一个job,从最后的action算子开始向前递推,遇到宽依赖(shuffle)划分stage,然后继续向前递推,知道没有rdd结束,递推使用的DAG(有向无环图)

图中绿色区域为划分的stage,上图划分为2个stage

根据numslice在stage内部划分task,task是spark最小代码执行逻辑单元,图中红色部分为task,每个stage包含2个task,stage执行是顺序进行的,不同stage的task不一定相同,需要看shuffle后的分区数目

2、spark运行流程


详细流程分为以下过程:

spark分为不同运行模式,常用的standalone和on yarn模式,上图为standalone模式

<1>提交任务

在集群某个节点提交任务,有client模式和cluster模式,以client为例。任务提交后,启动Driver,driver包含DAGScheduler和TaskScheduler。根据你使用的部署模式(deploy-mode)不同,Driver进程可能在本地启动,也可能在集群中某个工作节点上启动。Driver进程本身会根据我们设置的参数,占有一定数量的内存和CPU core。

<2>初始化driver

对于程序来说即:sc = new SparkContext(conf)

分别初始化DAGScheduler和TaskScheduler

<3>driver向master注册

完成初始化后,TaskScheduler将master进行注册,就是向集群管理器(可以是Spark Standalone集群,也可以是其他的资源管理集群,是YARN作为资源管理集群)申请运行Spark作业需要使用的资源,这里的资源指的就是Executor进程。

<4>master进行资源分配

master集群管理器会根据我们为Spark作业设置的资源参数,在各个工作节点worker上,启动一定数量的Executor进程,每个Executor进程都占有一定数量的内存和CPU core。

<5>启动Executor,并向driver注册

启动executor,并且在executor中启动线程池,然后向driver进行注册,driver即可得知master给分配的资源

然后开始解析需要运行的代码

sc.textFile("D:\\a\\a.txt")
  .map(a=>(new secondSort(a.split(",")(0).toInt,a.split(",")(1).toInt),a))
  .sortByKey()
  .foreach(a=>
  println(a._2+"\t")
  )

transformation代码不会被立即执行,只用在遇到action算子时,划分为不同的job

<6>DAGScheduler进行stage划分

DAGScheduler根据有向无环图对job进行stage划分,stage划分原则是逆推,遇到宽依赖即为不同stage,直到没有RDD结束,然后将stage划分为task,形成taskSet,即任务集合

<7>传递taskSet

DAGScheduler将不同stage形成的taskSet发送给TaskScheduler

<8>序列化task并分发task

TaskScheduler接收到taskSet,然后进行序列化,根据task分发算法进行task分发,将task分发到executor

<9>执行task

executor接收到task后,进行反序列化,然后按照分配的资源进行计算,每一个task对应一个线程

<10>形成结果

一个stage的所有task都执行完毕之后,会在各个节点本地的磁盘文件中写入计算中间结果,然后Driver就会调度运行下一个stage。下一个stage的task的输入数据就是上一个stage输出的中间结果。如此循环往复,直到将我们自己编写的代码逻辑全部执行完,并且计算完所有的数据,得到我们想要的结果为止。

3、资源调优

Executor的内存主要分为三块:第一块是让task执行我们自己编写的代码时使用,默认是占Executor总内存的20%;第二块是让task通过shuffle过程拉取了上一个stage的task的输出后,进行聚合等操作时使用,默认也是占Executor总内存的20%;第三块是让RDD持久化时使用,默认占Executor总内存的60%。

task的执行速度是跟每个Executor进程的CPU core数量有直接关系的。一个CPU core同一时间只能执行一个线程。而每个Executor进程上分配到的多个task,都是以每个task一条线程的方式,多线程并发运行的。如果CPU core数量比较充足,而且分配到的task数量比较合理,那么通常来说,可以比较快速和高效地执行完这些task线程。

理解作业基本原理,是我们进行资源参数调优的基本前提。

所谓的Spark资源参数调优,其实主要就是对Spark运行过程中各个使用资源的地方,通过调节各种参数,来优化资源使用的效率,从而提升Spark作业的执行性能。

资源调优主要从以下方面进行:

<1>num-executors

  • 参数说明:该参数用于设置Spark作业总共要用多少个Executor进程来执行。Driver在向YARN集群管理器申请资源时,YARN集群管理器会尽可能按照你的设置来在集群的各个工作节点上,启动相应数量的Executor进程。这个参数非常之重要,如果不设置的话,默认只会给你启动少量的Executor进程,此时你的Spark作业的运行速度是非常慢的。
  • 参数调优建议:每个Spark作业的运行一般设置50~100个左右的Executor进程比较合适,设置太少或太多的Executor进程都不好。设置的太少,无法充分利用集群资源;设置的太多的话,大部分队列可能无法给予充分的资源。
<2> executor-memory

  • 参数说明:该参数用于设置每个Executor进程的内存。Executor内存的大小,很多时候直接决定了Spark作业的性能,而且跟常见的JVM OOM异常,也有直接的关联。
  • 参数调优建议:每个Executor进程的内存设置4G~8G较为合适。但是这只是一个参考值,具体的设置还是得根据不同部门的资源队列来定。可以看看自己团队的资源队列的最大内存限制是多少,num-executors乘以executor-memory,是不能超过队列的最大内存量的。此外,如果你是跟团队里其他人共享这个资源队列,那么申请的内存量最好不要超过资源队列最大总内存的1/3~1/2,避免你自己的Spark作业占用了队列所有的资源,导致别的同学的作业无法运行。

<3>executor-cores

  • 参数说明:该参数用于设置每个Executor进程的CPU core数量。这个参数决定了每个Executor进程并行执行task线程的能力。因为每个CPU core同一时间只能执行一个task线程,因此每个Executor进程的CPU core数量越多,越能够快速地执行完分配给自己的所有task线程。
  • 参数调优建议:Executor的CPU core数量设置为2~4个较为合适。同样得根据不同部门的资源队列来定,可以看看自己的资源队列的最大CPU core限制是多少,再依据设置的Executor数量,来决定每个Executor进程可以分配到几个CPU core。同样建议,如果是跟他人共享这个队列,那么num-executors * executor-cores不要超过队列总CPU core的1/3~1/2左右比较合适,也是避免影响其他同学的作业运行。

<4>driver-memory

  • 参数说明:该参数用于设置Driver进程的内存。
  • 参数调优建议:Driver的内存通常来说不设置,或者设置1G左右应该就够了。唯一需要注意的一点是,如果需要使用collect算子将RDD的数据全部拉取到Driver上进行处理,那么必须确保Driver的内存足够大,否则会出现OOM内存溢出的问题。

<5>spark.default.parallelism

  • 参数说明:该参数用于设置每个stage的默认task数量。这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能。
  • 参数调优建议:Spark作业的默认task数量为500~1000个较为合适。很多同学常犯的一个错误就是不去设置这个参数,那么此时就会导致Spark自己根据底层HDFS的block数量来设置task的数量,默认是一个HDFS block对应一个task。通常来说,Spark默认设置的数量是偏少的(比如就几十个task),如果task数量偏少的话,就会导致你前面设置好的Executor的参数都前功尽弃。试想一下,无论你的Executor进程有多少个,内存和CPU有多大,但是task只有1个或者10个,那么90%的Executor进程可能根本就没有task执行,也就是白白浪费了资源!因此Spark官网建议的设置原则是,设置该参数为num-executors * executor-cores的2~3倍较为合适,比如Executor的总CPU core数量为300个,那么设置1000个task是可以的,此时可以充分地利用Spark集群的资源。

<6>spark.storage.memoryFraction

  • 参数说明:该参数用于设置RDD持久化数据在Executor内存中能占的比例,默认是0.6。也就是说,默认Executor 60%的内存,可以用来保存持久化的RDD数据。根据你选择的不同的持久化策略,如果内存不够时,可能数据就不会持久化,或者数据会写入磁盘。
  • 参数调优建议:如果Spark作业中,有较多的RDD持久化操作,该参数的值可以适当提高一些,保证持久化的数据能够容纳在内存中。避免内存不够缓存所有的数据,导致数据只能写入磁盘中,降低了性能。但是如果Spark作业中的shuffle类操作比较多,而持久化操作比较少,那么这个参数的值适当降低一些比较合适。此外,如果发现作业由于频繁的gc导致运行缓慢(通过spark web ui可以观察到作业的gc耗时),意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。

<7>spark.shuffle.memoryFraction

  • 参数说明:该参数用于设置shuffle过程中一个task拉取到上个stage的task的输出后,进行聚合操作时能够使用的Executor内存的比例,默认是0.2。也就是说,Executor默认只有20%的内存用来进行该操作。shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时就会极大地降低性能。
  • 参数调优建议:如果Spark作业中的RDD持久化操作较少,shuffle操作较多时,建议降低持久化操作的内存占比,提高shuffle操作的内存占比比例,避免shuffle过程中数据过多时内存不够用,必须溢写到磁盘上,降低了性能。此外,如果发现作业由于频繁的gc导致运行缓慢,意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。

一个配置实例:

./bin/spark-submit \
  --master yarn-cluster \
  --num-executors 100 \
  --executor-memory 6G \
  --executor-cores 4 \
  --driver-memory 1G \
  --conf spark.default.parallelism=1000 \
  --conf spark.storage.memoryFraction=0.5 \
  --conf spark.shuffle.memoryFraction=0.3 \












  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值