docker+jupyter配置实验室共用GPU服务器(超详细教程)

硬件配置:技嘉Turbo2 RTX3090+Ubuntu20.04LTS

安装显卡驱动

安装显卡驱动时**不要!!!!**选择长期支持版(455.23.04)

必须使用短期支持版(455.45.01)

wget https://us.download.nvidia.com/XFree86/Linux-x86_64/455.45.01/NVIDIA-Linux-x86_64-455.45.01.run
sudo sh NVIDIA-Linux-x86_64-455.45.01.run

可能会出现gcc、g++版本不一致问题导致驱动安装失败,可通过安装多个版本的gcc切换使用来解决这一问题

#首先通过正常安装命令安装自己需要的gcc、g++版本
sudo apt install gcc-10.2 g++-10.2
#将刚才安装的gcc、g++加入到alternatives中
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-8 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-8 100
#通过以下命令实现版本切换
sudo update-alternatives --config gcc
sudo update-alternatives --config g++

解决gcc、g++问题后安提示安装显卡驱动。下面禁用nouveau驱动。nouveau 是系统自带的一个显示驱动程序,需要先将其禁用,然后再进行下一步操作,否则在安装显卡驱动时,会提示:You appear to be running an X server …,然后安装失败。分别打开如下两个文件(如果没有就创建一个),并在其中输入如下两句,然后保存。

sudo vim /etc/modprobe.d/nvidia-installer-disable-nouveau.conf
sudo vim /lib/modprobe.d/nvidia-installer-disable-nouveau.conf
#将下面两句添加至文件中
blacklist nouveau
options nouveau modeset=0
安装cuda+cudnn

驱动成功安装后需要安装cuda(支持计算的框架)与cudnn(支持计算的库),与RTX3090适配的cuda为11及以上,因为截止目前最新的tensorflow-2.4.0对应cuda-11.0,所以我们安装cuda-11.0 。访问英伟达官网选择适合自己系统的版本,按照提示的命令进行下载

wget https://developer.download.nvidia.com/compute/cuda/11.2.0/local_installers/cuda_11.2.0_460.27.04_linux.run
sudo sh cuda_11.2.0_460.27.04_linux.run

执行安装命令时会出现选择安装组件的的多个选项,第一项为显卡驱动(上一步已安装),将[X]去掉,后几项可以全部选择,最后选择install。等待几十秒出现成功的界面。

环境变量!!环境变量!!环境变量!!

一定要注意有两个环境变量文件PATHLD_LIBRARY_PATH

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值