矩阵分解 (加法篇)

转自简书:https://www.jianshu.com/p/fc89d92bbc24

引言

分解的思想其实并不古老, 而且大家都熟悉的,把复杂的分而治之,然后再组合起来。

分解有什么好处?

类比的看, 我们知道整数的分解可以利用乘法也可以利用加法。譬如我们玩过的游戏24点, 就是利用加法进行分解和整合。这种分解很重要的是计算上的便利性!

而质数(素数)因子分解, 又是另外一种方式的分解。 而这种分解,重要的是对数本身理解上的便利性。而理解上的便利, 又带来了计算上的便利。

那么,类比到矩阵, 也有加法和乘法的两种分解。

矩阵的加法分解

三种经典分解

最经典的是雅克比Jacobi方法, 将一个矩阵分为对角阵和非对角阵的部分。

类似的也有高斯-赛德尔Gauss–Seidel方法,分解成上三角和下三角阵之后。

更进一步, 我们可以有逐次超松驰迭代法Successive Over Relaxation (SOR), 更进一步分解成三部分, 对角阵和上下三角形。 同时增加权重调整分解后的比例。

这样的分解, 利用内在的等式应有的平衡性和不动点收敛理论, 可以快速迭代。

如何理解这种分解?

首先对x的拆分到等式左右两边之后, 可以看成是找到y=x和另外一个函数的交点,再根据不动点收敛理论(参考收敛率概述 (Overview of Rates of Convergence)), 就可以进行迭代求解了。  下面可以看一下不动点理论告诉我们,并不是任何分解都能收敛的!

所以, 在雅克比方法里面, 要求谱半径小于1:

对于谱半径 和 矩阵范数直接的关系联系起来去理解。

然后,可以通过不动点理论, 要求曲线的斜率绝对值不大于1, 这样直观去理解可收敛性。

小结:

这里通过简单类比, 分析了矩阵分解的加法的策略。 下次, 我们分析矩阵分解乘法的策略,常见的有LU, LDL, QR, SVD分解。 那么这些分解, 类比的来说为什么容易计算的同时, 还可以方便对矩阵的认识呢?



作者:史春奇
链接:https://www.jianshu.com/p/fc89d92bbc24
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值