目标检测
(1)概念:
检测图片中所有物体的类别标签==(Category label)和位置(最小外接矩形/Bounding box)==

(2)与其他任务的区别:
单例任务:分类、分类&定位
多例任务:物体检测、实例分割(最难,要确定像素属于哪类)

(3)相关著名比赛
ImageNet Large Scale Visual Recongnition Challenge
这个比赛的项目包括:
- 图像分类
- 物体检测
- 场景分类
- 物体定位
- 场景解析
(4) 目标检测模型进化史

目前主流的目标检测算法主要是基于深度学习模型,其可以分成两大类:
- (1)two-stage检测算法,其将检测问题划分为两个阶段,首先产生候选区域(region proposals),然后对候选区域分类(一般还需要对位置精修),这类算法的典型代表是基于region proposal的R-CNN系算法,如R-CNN,Fast R-CNN,Faster R-CNN等;
- (2)one-stage检测算法,其不需要region proposal阶段,直接产生物体的类别概率和位置坐标值,比较典型的算法如YOLO和SSD。
目标检测模型的主要性能指标是检测准确度和速度,对于准确度,目标检测要考虑物体的定位准确性,而不单单是分类准确度。一般情况下,two-stage算法在准确度上有优势,而one-stage算法在速度上有优势。不过,随着研究的发展,两类算法都在两个方面做改进。
以上,就是关于目标检测的有关内容,以上模型的具体介绍放在了我的下一篇博客中,参考课程是叶梓老师的《深度学习之分类与目标检测》。
本文介绍了目标检测的概念,将其与分类、实例分割等任务进行对比,并概述了ImageNet比赛及其项目,包括图像分类、物体检测等。同时,文章回顾了目标检测模型的进化史,详细阐述了two-stage和one-stage检测算法的特点及代表性模型,如R-CNN系列、YOLO和SSD,并分析了它们在准确度和速度上的优劣。
858

被折叠的 条评论
为什么被折叠?



