目标检测详细概括

本文介绍了目标检测的概念,将其与分类、实例分割等任务进行对比,并概述了ImageNet比赛及其项目,包括图像分类、物体检测等。同时,文章回顾了目标检测模型的进化史,详细阐述了two-stage和one-stage检测算法的特点及代表性模型,如R-CNN系列、YOLO和SSD,并分析了它们在准确度和速度上的优劣。

目标检测

(1)概念:

检测图片中所有物体的类别标签==(Category label)和位置(最小外接矩形/Bounding box)==
在这里插入图片描述

(2)与其他任务的区别:

单例任务:分类、分类&定位
多例任务:物体检测、实例分割(最难,要确定像素属于哪类)

在这里插入图片描述

(3)相关著名比赛

ImageNet Large Scale Visual Recongnition Challenge
这个比赛的项目包括

  1. 图像分类
  2. 物体检测
  3. 场景分类
  4. 物体定位
  5. 场景解析

(4) 目标检测模型进化史

在这里插入图片描述
目前主流的目标检测算法主要是基于深度学习模型,其可以分成两大类:

  • (1)two-stage检测算法,其将检测问题划分为两个阶段,首先产生候选区域(region proposals),然后对候选区域分类(一般还需要对位置精修),这类算法的典型代表是基于region proposal的R-CNN系算法,如R-CNN,Fast R-CNN,Faster R-CNN等;
  • (2)one-stage检测算法,其不需要region proposal阶段,直接产生物体的类别概率和位置坐标值,比较典型的算法如YOLO和SSD

目标检测模型的主要性能指标是检测准确度和速度,对于准确度,目标检测要考虑物体的定位准确性,而不单单是分类准确度。一般情况下,two-stage算法在准确度上有优势,而one-stage算法在速度上有优势。不过,随着研究的发展,两类算法都在两个方面做改进。

以上,就是关于目标检测的有关内容,以上模型的具体介绍放在了我的下一篇博客中,参考课程是叶梓老师的《深度学习之分类与目标检测》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值