自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(69)
  • 收藏
  • 关注

原创 IEEE Transactions的模板中,出现subfig包和fontenc包冲突的问题,怎么解决?

本文章记录如何在IEEE Transactions的模板中,出现了subfig包和fontenc包冲突的问题,该怎么解决。

2023-06-26 21:51:56 1081 1

原创 如何在IEEE的模板中引用Arxiv中的论文

本文章记录如何在IEEE Transactions的模板中,引用Arxiv中的论文,记录具体的论文格式信息。

2023-05-30 16:27:40 8648

原创 IEEE Transactions模板中参考文献作者缩写、期刊名缩写

本文章记录如何在IEEE Transactions的模板中,解决参考文献的作者缩写、期刊名字缩写的问题。

2023-03-18 15:55:33 12006 4

原创 如何绘制彩色柱状图

用Python绘制柱状图。彩色的柱状图

2023-03-04 16:43:48 474

原创 如何将彩色图像进行三通道的Canny边缘检测

    本文主要记录如何将彩色图像进行三通道的Canny边缘检测。    将彩色图像进行三通道的Canny边缘检测,主要包括以下2个步骤:    (1)将彩色图像分别分离为3个通道的图像;    (2)将3个通道的图像分别进行Canny边缘检测;    (3)展示边缘检测结果。    将彩色图像Airplane分离成3个通道的图像,分别为Airplane_B.jpg,Airplane_G.jpg,Airplane_R.jpg。具体代码为:2.灰度图像实现Canny边缘检测    分别将3个通道的

2022-06-11 21:47:59 2288

原创 IEEEE trans模板中怎么使用algorithm2e

IEEEE trans模板中怎么使用algorithm2e    本文主要记录如何在IEEEE trans模板中使用algorithm2e,避免踩坑,找不到解决方案。目录IEEEE trans模板中怎么使用algorithm2e1.注释掉该注释的2.导入algorithm2e包3.使用algorithm2e包写算法1.注释掉该注释的    在导入algorithm2e包之前,将不必要的包进行注释,否则会一直报错,还找不到原因。需要注释的包包括下面两个:\usepackage{algorithm}

2022-05-17 16:32:51 2481

原创 英语写作神器Quillbot---如何使用免费的Premium功能

英语写作神器Quillbot—如何使用免费的Premium功能    本文主要记录如何在国内免费使用Quillbot的Premium功能,也就是在Google Chrome中安装相应的插件。目录英语写作神器Quillbot---如何使用免费的Premium功能1.安装Chrome浏览器1.下载插件12.下载crack插件23.具体使用1.安装Chrome浏览器    安装Chrome浏览器,因为这个插件主要是针对chrome浏览器的,所以推荐安装chrome浏览器,有人说Edge浏览器也可以,所以具

2022-04-22 11:07:07 57144 39

原创 怎么在Excel中生成Latex代码——excel2latex插件

怎么在Excel中生成Latex代码——excel2latex插件    在使用Latex或beamer过程中,需要将excel表格直接生成latex能用的代码,将excel生成latex代码的方法记录下来。目录怎么在Excel中生成Latex代码——excel2latex插件步骤1:下载excel2latex插件步骤2:使用excel2latex插件步骤3:注意事项步骤1:下载excel2latex插件    Exel2latex插件的下载地址为:excel2latex下载地址。    对这个

2022-04-18 15:49:55 24813 6

原创 Python中关于判断列表list是否相等的问题

Python中关于判断列表list是否相等的问题    本文主要记录在列表list的判断是否相等过程中遇到的问题,并对列表判断是否相等的相关知识进行汇总。目录Python中关于判断列表list是否相等的问题0.问题起源1.用==操作判断列表是否相等2.用is操作判断列表是否相等3.用operator.eq()操作判断列表是否相等4.小结0.问题起源    本文的原因是因为在判断列表list是否相等的过程中,关于==、is、operator.eq()三种方法存在疑惑,于是将这3种方法一并总结归纳如下。

2022-04-15 17:45:53 25696 2

原创 学术写作常用的网站和软件总结(含Copytranslator+Grammarly+Academic Prasebank+QuillBot)

Academic Prasebank 2021版本和2014版本的下载链接如下,免费下载,仅供学术学习用,禁商用。内容链接: https://pan.baidu.com/s/1Wrb52Iv_SuoqGnZNNq6htQ 密码: mpgb

2022-03-14 21:53:57 6046 1

原创 Python中关于列表list的赋值问题

Python中关于列表list的赋值问题    本文主要记录在列表list的赋值过程中遇到的问题,并对列表的拷贝相关知识进行汇总。目录Python中关于列表list的赋值问题0.问题起源1.列表list赋值方法2.浅拷贝(shallow copy)3.深拷贝4.关于拷贝操作的提醒5.参考资料0.问题起源    本文的原因是因为在使用list的直接赋值b=a时,得到的结果与预期不同,后来才发现直接使用等于号=对列表进行赋值会产生一系列的问题,于是将赋值、浅拷贝、深拷贝三者之间的区别进行记录。1.列表

2022-03-03 11:32:40 17148

原创 Python中如何使用matplotlib给柱状图添加数据标签(bar_label())

Python中如何使用matplotlib给柱状图添加数据标签(bar_label())    本文主要记录如何用使用matplotlib给柱状图添加数据标签,是以matplotlib.pyplot.bar_label()为例。目录Python中如何使用matplotlib给柱状图添加数据标签(bar_label())0.更新matplotlib库1.导入库2.数据准备3.绘制柱状图4.绘图结果5.完整代码6.bar_label()相关参数的补充说明7.参考文献0.更新matplotlib库    

2022-03-02 12:16:14 26467 3

原创 Pycharm中如何更新第三方库(以tensorflow库为例)

Pycharm中如何更新第三方库(以tensorflow库为例)    本文主要记录如何在Pycharm中更新第三方库,以tensorflow库为例。目录Pycharm中如何更新第三方库(以tensorflow库为例)1.前提条件2.Pycharm中更新第三方库流程3.Pycharm中查询第三方库当前的版本信息1.前提条件    本文是在安装了Anaconda3的环境下,使用Pycharm关联的解释器为Anaconda3中的环境,于是选择在Pycharm中直接对第三方库进行更新。    如果没有安

2022-03-02 11:44:11 8458 1

原创 Python中matplotlib绘制折线图方法总结

Python中matplotlib绘制折线图方法总结(看这一篇blog就够了)    本文主要记录如何用Python中的自带库matplotlib绘制折线图。目录Python中matplotlib绘制折线图方法总结(看这一篇blog就够了)1.导入库2.数据准备3.图像绘制4.完整代码(直接复制可运行)5.如何设置线型、线颜色、线上圆点标志、X轴labels5.1 如何设置线型5.2 如何设置线颜色5.3 如何设置线上圆点标志5.4如何设置X轴刻度labels标签6.参考链接1.导入库    直接导

2022-02-24 10:45:44 23275 1

原创 删除MAC自动生成的DS_Store文件

删除MAC自动生成的DS_Store文件    本文主要记录如何删除MAC自动生成的DS_Store文件。目录删除MAC自动生成的DS_Store文件1.步骤12.步骤21.步骤1    打开MAC自带的终端,并转到你想要删除的文件所在的目录,输入如下代码,将以".DS_Store"为后缀的文件都手动删除。find . -name '*.DS_Store' -type f -delete2.步骤2    使用下面的代码设置:取消自动生成以".DS_Store"为后缀的文件。这样设置之后就不会

2022-01-10 10:44:13 8227 4

原创 Python计算两张图的PSNR值

Python计算两张图的PSNR值    本文主要记录如何用python实现求解两张图的PSNR值。目录Python计算两张图的PSNR值1.PSNR求解公式2.完整的PSNR求解代码3.运算结果展示4.参考文献1.PSNR求解公式    (1)对于三通道的RGB图像 计算MSE的数学表达式是:    具体的代码为:# compute MSEmse = np.mean((img1/1.0-img2/1.0)**2)    (2)得到MSE后计算PSNR,具体数学表达式为:    具体

2021-12-21 13:04:57 11960 8

原创 PyTorch学习笔记(18)--划分训练集和测试集的脚本

PyTorch学习笔记(18)–划分训练集和测试集的脚本文件    本博文是PyTorch的学习笔记,第18次内容记录,主要记录了如何自动的划分训练集和测试集。主要包括了2种方式,第1种方式针对的是数据集是按照类别存放在多个文件夹中,适用于分类问题,将同一类的图片划分为训练集和测试集,第2种方式针对数据不按照分类存放,而是直接放在同一个文件夹下,将数据分成训练集和测试集。目录PyTorch学习笔记(18)--划分训练集和测试集的脚本文件1.按分类存放2.所有的按一个文件夹存放1.按分类存放    在

2021-12-03 21:13:04 2823

原创 PyTorch学习笔记(17)--torchvision.transforms用法介绍

PyTorch学习笔记(17)–torchvision.transforms用法介绍    本博文是PyTorch的学习笔记,第17次内容记录,主要记录了torchvision.transforms的使用方法。目录PyTorch学习笔记(17)--torchvision.transforms用法介绍1.问题来源2.torchvision.transforms具体用法3.torchvision.transforms其他的用法4.补充torchvision模块的其他功能1.问题来源    在读ResNe

2021-12-03 11:55:43 2716 2

原创 python中argparse模块的使用

1.argparse模块    argsparse是python的命令行解析的标准模块,内置于python,不需要安装。这个库可以让我们直接在命令行中就可以向程序中传入参数并让程序运行。2.argparse模块的使用    先在代码中import argparse导入该模块。    使用过程主要包括下面3个步骤:创建 ArgumentParser() 对象调用 add_argument() 方法添加参数使用 parse_args() 解析添加的参数    具体实例代码如下所示:impo

2021-12-02 19:14:11 646

原创 Python中*args和**kwargs的使用方法

1.*args和**kwargs的含义    在Python中的代码中经常会见到这两个词 args 和 kwargs,前面通常还会加上一个或者两个星号。其实这只是编程人员约定的变量名字,args 是 arguments 的缩写,表示位置参数;kwargs 是 keyword arguments 的缩写,表示关键字参数。这其实就是 Python 中可变参数的两种形式,并且 *args 必须放在 **kwargs 的前面,因为位置参数在关键字参数的前面。2.*args的用法    *args就是就是传递一

2021-11-29 10:50:15 2783

原创 python调用matlab的方法记录

1.python版本与matlab版本的对应关系    在MAC中安装了Anaconda3,其中自带的python版本为3.8,通过python版本与matlab版本的对应关系,至少要下载R2020b及其以上版本的matlab,于是安装了R2021b版本的matlab,这时就能保证matlab与python的版本相对应,于是就能在python中调用matlab代码。2.import matlab.engine的问题    在python中使用import matlab.engine时,会提示:Impo

2021-11-22 21:48:30 1673 1

原创 Python版本与Matlab版本的对应关系

1.python版本与matlab版本的对应关系    在python中要调用matlab代码时,需要注意python版本和matlab版本的对应关系,如果python版本过高,是无法成功的调用相应的matlab版本,因此总结一下python版本与matlab版本的对应关系,如下所示:...

2021-11-20 20:27:07 8889

原创 常用的图像处理标准图片汇总

常用的图像处理标准图片(Lena、cameraman等)获取    在进行图像处理时,有一些常用的图像数据需要用到,这里总结一下这些图像,主要包括:Baboon、Barbara、Cameraman、Goldhill、Lena、Peppers等。数据链接为:Index of /~phao/IP/Images。    本博文转载自文章:常用的图像处理标准图片(Lena、cameraman等)获取。......

2021-09-14 15:42:53 18754 5

原创 目标检测基础知识(2)--R-CNN

目标检测基础知识(2)–R-CNN    本文是目标检测基础知识相关的第2次学习记录,主要记录R-CNN算法相关的知识。目录目标检测基础知识(2)--R-CNN0.参考博客1.背景2.滑动窗口3.R-CNN模型4.候选区域选择5.非极大值抑制(NMS)6.修正候选区域(边框回归)7.目标检测评估指标0.参考博客干货 | 目标检测入门,看这篇就够了(已更完)【目标检测系列】经典论文回顾深度学习检测小目标常用方法OverFeat 详解(一)目标检测-R-CNN模型1.背景    对于存在

2021-09-06 22:21:10 523 1

原创 目标检测基础知识(1)--目标检测任务描述

目标检测基础知识(1)–目标检测任务描述    本文是目标检测基础知识相关的第1次学习记录,主要包括目标检测的任务描述,目标检测的常用算法。目录目标检测基础知识(1)--目标检测任务描述0.参考博客1.目标检测项目结构2.目标检测算法分类3.目标检测的任务4.目标定位的简单实现思路5.分类与目标检测的区别0.参考博客干货 | 目标检测入门,看这篇就够了(已更完)【目标检测系列】经典论文回顾深度学习检测小目标常用方法1.目标检测项目结构    在目标检测工程中,主要的项目结构包括三层,分别

2021-09-06 11:28:27 2267

原创 亮温模型--相关概念

亮温模型(1)–相关概念    本博文是亮温模型(Brightness Temperature Model)学习的第1篇论文,主要记录亮温模型学习的相关内容。目录亮温模型(1)--相关概念1.亮温模型相关论文相关论文列表:2.亮温模型中重要概念和背景知识2.1 亮度温度2.2 微波辐射计(MRM)2.3 微波辐射计的四个频率通道2.4 太阳时角2.5 HMKSF2.6 最近邻插值2.7 HCS和LECS2.8 样条插值方法2.9 误差计算方法3. 论文的贡献点4. 论文中的疑惑1.亮温模型相关论文相

2021-09-03 16:42:19 1888 3

原创 PyTorch学习笔记(16)--在GPU上实现神经网络模型训练

PyTorch学习笔记(16)–在GPU上实现神经网络模型训练    本博文是PyTorch的学习笔记,第16次内容记录,主要介绍如何在GPU上实现神经网络模型训练。目录PyTorch学习笔记(16)--在GPU上实现神经网络模型训练1.为什么要用GPU1.1GPU是什么1.2用GPU训练网络模型的好处2.如何用GPU训练神经网络模型2.1代码修改方法12.1代码修改方法23.学习小结1.为什么要用GPU1.1GPU是什么    在一台笔记本中往往会听到cpu这个词汇,是中央处理单元(centra

2021-08-20 12:16:29 8789 4

原创 Git使用教程(1)--MAC下Git和Github的使用

Git使用教程(1)–MAC下Git和Github的使用    本博文主要是介绍Git和Github的使用方法目录Git使用教程(1)--MAC下Git和Github的使用1.MAC下Git的配置2.GitHub上的申请token的方法3.将本地代码利用git上传到GitHub的方法4.如何在github上查找大牛的代码1.MAC下Git的配置    MAC中Git的下载和安装步骤如下:在终端下输入:git --version,查看电脑是否已经安装了git,一般情况下MAC是已经预装了git的。

2021-08-19 23:25:52 1189

原创 # PyTorch学习笔记(15)--神经网络模型训练实战

PyTorch学习笔记(15)–神经网络模型训练实战    本博文是PyTorch的学习笔记,第15次内容记录,主要是以一个实际的例子来分享神经网络模型的训练和测试的完整过程。目录PyTorch学习笔记(15)--神经网络模型训练实战1.神经网络模型训练实践1.1神经网络训练一般步骤1.2神经网络训练代码1.3神经网络训练结果2.学习小结1.神经网络模型训练实践1.1神经网络训练一般步骤    经过前几面14次的知识介绍,现将神经网络模型训练的一般步骤总结如下: 1. 根据需要搭建神经网络模型,

2021-08-19 16:23:16 6332 2

原创 PyTorch学习笔记(14)--神经网络模型的保存与读取

PyTorch学习笔记(14)–神经网络模型的保存与读取    本博文是PyTorch的学习笔记,第14次内容记录,主要是讲解如何进行神经网络模型的保存和读取。目录PyTorch学习笔记(14)--神经网络模型的保存与读取1.网络模型保存和加载--方法11.1网络模型保存方法11.2网络模型加载方法12.网络模型保存和加载--方法22.1网络模型保存方法22.2网络模型加载方法23.学习小结1.网络模型保存和加载–方法11.1网络模型保存方法1    在搭建自己的神经网络模型之后,需要将模型进行保

2021-08-19 00:12:33 3099

原创 PyTorch学习笔记(13)--现有网络模型的使用及修改

PyTorch学习笔记(13)–现有网络模型的使用及修改    本博文是PyTorch的学习笔记,第12次内容记录,主要是在上一篇文章中提到的损失函数的基础上,研究神经网络优化器的使用方法。目录PyTorch学习笔记(13)--现有网络模型的使用及修改1.现有网络模型2.现有模型的使用2.1VGG16模型的结构2.2修改现有VGG16模型的结构3.学习小结1.现有网络模型    在现有的torchvision中提供了许多常见的神经网络模型,这些模型主要包括:分类、语义分割、目标检测、视频分类等类型,

2021-08-18 23:21:36 4973 1

原创 PyTorch学习笔记(12)--神经网络优化器

PyTorch学习笔记(12)–神经网络优化器    本博文是PyTorch的学习笔记,第12次内容记录,主要是在上一篇文章中提到的损失函数的基础上,研究神经网络优化器的使用方法。目录PyTorch学习笔记(12)--神经网络优化器1.优化器是什么2.优化器的使用2.1SGD优化器的使用2.2使用SGD优化器进行多轮训练3.学习小结1.优化器是什么    神经网络的学习的目的就是寻找合适的参数,使得损失函数的值尽可能小。解决这个问题的过程为称为最优化。解决这个问题使用的算法叫做优化器。在PyTorc

2021-08-18 18:21:08 1319

原创 PyTorch学习笔记(11)--损失函数与反向传播

PyTorch学习笔记(11)–损失函数与反向传播    本博文是PyTorch的学习笔记,第11次内容记录,主要介绍损失函数和反向传播的使用。目录PyTorch学习笔记(11)--损失函数与反向传播1.损失函数2.损失函数的使用2.1L1Loss函数的使用2.2MSELoss函数的使用2.3CrossEntropyLoss函数的使用2.4CrossEntropyLoss函数在神经网络中的应用3.学习小结1.损失函数    损失函数(loss function)或代价函数(cost function

2021-08-18 16:23:41 1851

原创 PyTorch学习笔记(10)--搭建简单的神经网络以及Sequential的使用

PyTorch学习笔记(10)–搭建简单的神经网络以及Sequential的使用    本博文是PyTorch的学习笔记,第10次内容记录,主要搭建一个简单的神经网络,并介绍Sequential的使用。目录PyTorch学习笔记(10)--搭建简单的神经网络以及Sequential的使用1.非线性激活1.1什么是非线性激活1.2常见的非线性激活函数2.非线性激活2.1非线性激活函数相关参数2.2非线性激活函数应用实例1--ReLU处理矩阵2.3非线性激活函数应用实例2--Sigmoid处理图片3.学习小

2021-08-18 11:27:39 3099

原创 PyTorch学习笔记(9)--神经网络:线性层

PyTorch学习笔记(9)–神经网络:线性层    本博文是PyTorch的学习笔记,第9次内容记录,主要介绍神经网络线性层的基本使用。目录PyTorch学习笔记(9)--神经网络:线性层1.什么是线性层2.线性层2.1线性激活函数相关参数2.2线性层应用举例12.3线性层应用举例23.学习小结1.什么是线性层    线性层又叫全连接层,其中每个神经元与上一层所有神经元相连,一个简单的线性层如下图所示:2.线性层2.1线性激活函数相关参数    在PyTorch官网中,详细介绍了线性层的详

2021-08-17 23:23:39 9595 2

原创 PyTorch学习笔记(8)--神经网络:非线性激活

PyTorch学习笔记(8)–神经网络:非线性激活    本博文是PyTorch的学习笔记,第8次内容记录,主要介绍神经网络非线性激活函数的基本使用。目录PyTorch学习笔记(8)--神经网络:非线性激活1.非线性激活1.1什么是非线性激活1.2常见的非线性激活函数2.非线性激活2.1非线性激活函数相关参数2.2非线性激活函数应用实例1--ReLU处理矩阵2.3非线性激活函数应用实例2--Sigmoid处理图片3.学习小结1.非线性激活1.1什么是非线性激活    如果神经元的输出是输入的线性函

2021-08-17 22:17:58 2200 1

原创 PyTorch学习笔记(7)--神经网络:池化层

PyTorch学习笔记(7)–神经网络:池化层    本博文是PyTorch的学习笔记,第7次内容记录,主要介绍神经网络池化层的基本使用。目录PyTorch学习笔记(7)--神经网络:池化层1.池化操作1.1什么是池化操作1.2池化操作的类型1.3池化操作的步骤2.池化层2.1池化层相关参数2.2最大池化应用实例1--处理矩阵2.3最大池化应用实例2--处理图片2.4池化层input和output尺寸信息3.学习小结1.池化操作1.1什么是池化操作    池化操作(Pooling)是CNN中非常常

2021-08-17 18:39:34 4887 1

原创 PyTorch学习笔记(6)--神经网络:卷积层

PyTorch学习笔记(6)–神经网络:卷积层    本博文是PyTorch的学习笔记,第6次内容记录,主要介绍神经网络卷积层的基本使用。目录PyTorch学习笔记(6)--神经网络:卷积层1.卷积操作是什么2.卷积层2.1卷积层相关参数2.2卷积层应用实例3.学习小结1.卷积操作是什么    关于具体什么是卷积操作,不是本文要讲的重点,但是本文的后续操作都是建立在卷积操作之上的,因此在学习卷积层的相关知识之前,很有必要弄清楚什么是卷积操作,这里推荐大家参照一下PyTorch官网中相关页面的动态图片

2021-08-17 16:46:08 1330

原创 PyTorch学习笔记(5)--神经网络基本骨架nn.Module的使用

PyTorch学习笔记(5)–神经网络基本骨架nn.Module的使用    本博文是PyTorch的学习笔记,第5次内容记录,主要介绍神经网络基本骨架nn.Module的基本使用。目录PyTorch学习笔记(5)--神经网络基本骨架nn.Module的使用1.nn.Module是什么2.nn.Module的使用2.1nn.Module的基本结构2.2搭建自己的神经网络3.学习小结1.nn.Module是什么    torcn.nn是专门为神经网络设计的模块化接口. nn构建于autograd之上,

2021-08-16 11:50:52 1309 1

原创 PyTorch学习笔记(4)--DataLoader的使用

PyTorch学习笔记(4)–DataLoader的使用    本博文是PyTorch的学习笔记,第4次内容记录,主要介绍DataLoader的基本使用。目录PyTorch学习笔记(4)--DataLoader的使用1.Dataset和DataLoader的区别2.DataLoader的使用2.1DataLoader的基础使用3.学习小结1.Dataset和DataLoader的区别    torch.utils.data.Dataset是代表这一数据的抽象类(也就是基类)。我们可以通过继承和重写这

2021-08-15 23:06:20 119793 8

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除