试题背景
顿顿在学习了数字图像处理后,想要对手上的一副灰度图像进行降噪处理。不过该图像仅在较暗区域有很多噪点,如果贸然对全图进行降噪,会在抹去噪点的同时也模糊了原有图像。因此顿顿打算先使用邻域均值来判断一个像素是否处于较暗区域,然后仅对处于较暗区域的像素进行降噪处理。
问题描述
待处理的灰度图像长宽皆为 n 个像素,可以表示为一个 n×n 大小的矩阵 A,其中每个元素是一个 [0,L) 范围内的整数,表示对应位置像素的灰度值。
对于矩阵中任意一个元素 Aij(0≤i,j<n),其邻域定义为附近若干元素的集和:
Neighbor(i,j,r)={Axy|0≤x,y<n and |x−i|≤r and |y−j|≤r}
这里使用了一个额外的参数 r 来指明 Aij 附近元素的具体范围。根据定义,易知 Neighbor(i,j,r) 最多有 (2r+1)2 个元素。
如果元素 Aij 邻域中所有元素的平均值小于或等于一个给定的阈值 t,我们就认为该元素对应位置的像素处于较暗区域。
下图给出了两个例子,左侧图像的较暗区域在右侧图像中展示为黑色,其余区域展示为白色。
现给定邻域参数 r 和阈值 t,试统计输入灰度图像中有多少像素处于较暗区域。
输入格式
输入共 n+1 行。
输入的第一行包含四个用空格分隔的正整数 n、L、r 和 t,含义如前文