ccf 202104-2 邻域均值

本文介绍了如何使用邻域均值来判断图像中的像素是否属于较暗区域,特别是在图像降噪处理中的应用。给定一个灰度图像矩阵,通过计算每个像素的邻域内元素的平均值,并与阈值比较,确定处于较暗区域的像素数量。
摘要由CSDN通过智能技术生成

试题背景

顿顿在学习了数字图像处理后,想要对手上的一副灰度图像进行降噪处理。不过该图像仅在较暗区域有很多噪点,如果贸然对全图进行降噪,会在抹去噪点的同时也模糊了原有图像。因此顿顿打算先使用邻域均值来判断一个像素是否处于较暗区域,然后仅对处于较暗区域的像素进行降噪处理。

问题描述

待处理的灰度图像长宽皆为 n 个像素,可以表示为一个 n×n 大小的矩阵 A,其中每个元素是一个 [0,L) 范围内的整数,表示对应位置像素的灰度值。
对于矩阵中任意一个元素 Aij(0≤i,j<n),其邻域定义为附近若干元素的集和:

Neighbor(i,j,r)={Axy|0≤x,y<n and |x−i|≤r and |y−j|≤r}

这里使用了一个额外的参数 r 来指明 Aij 附近元素的具体范围。根据定义,易知 Neighbor(i,j,r) 最多有 (2r+1)2 个元素。

如果元素 Aij 邻域中所有元素的平均值小于或等于一个给定的阈值 t,我们就认为该元素对应位置的像素处于较暗区域
下图给出了两个例子,左侧图像的较暗区域在右侧图像中展示为黑色,其余区域展示为白色。

 

 

现给定邻域参数 r 和阈值 t,试统计输入灰度图像中有多少像素处于较暗区域

输入格式

输入共 n+1 行。

输入的第一行包含四个用空格分隔的正整数 n、L、r 和 t,含义如前文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值