问题描述
n 个小朋友站成一排。现在要把他们按身高从低到高的顺序排列,但是每次只能交换位置相邻的两个小朋友。
每个小朋友都有一个不高兴的程度。开始的时候,所有小朋友的不高兴程度都是0。
如果某个小朋友第一次被要求交换,则他的不高兴程度增加1,如果第二次要求他交换,则他的不高兴程度增加2(即不高兴程度为3),依次类推。当要求某个小朋友第k次交换时,他的不高兴程度增加k。
请问,要让所有小朋友按从低到高排队,他们的不高兴程度之和最小是多少。
如果有两个小朋友身高一样,则他们谁站在谁前面是没有关系的。
输入格式
输入的第一行包含一个整数n,表示小朋友的个数。
第二行包含 n 个整数 H1 H2 … Hn,分别表示每个小朋友的身高。
输出格式
输出一行,包含一个整数,表示小朋友的不高兴程度和的最小值。
样例输入
3
3 2 1
样例输出
9
样例说明
首先交换身高为3和2的小朋友,再交换身高为3和1的小朋友,再交换身高为2和1的小朋友,每个小朋友的不高兴程度都是3,总和为9。
数据规模和约定
对于10%的数据, 1<=n<=10;
对于30%的数据, 1<=n<=1000;
对于50%的数据, 1<=n<=10000;
对于100%的数据,1<=n<=100000,0<=Hi<=1000000。
每个小朋友的最小移动次数就是左边比他高的人数加上右边比他低的人数,再用树状数组进行优化。
AC的C++程序如下;
#include<iostream>
#include<cstring>
#include<string>
using namespace std;
const int maxn=1000000+5;
typedef long long ll;
int tree[maxn];
ll move[maxn];//记录每个小朋友移动的次数
int high[maxn];//记录每个小朋友的身高
int lowbit(int x)
{
return (x&-x);
}
void add(int x,int value)
{
for(int i=x;i<maxn;i+=lowbit(i))
{
tree[i]+=value;
}
}
int get(int x)
{
int sum=0;
for(int i=x;i;i-=lowbit(i))
{
sum+=tree[i];
}
return sum;
}
int main()
{
int n;
cin>>n;
ll ans=0;
memset(tree,0,sizeof(tree));
for(int i=0;i<n;i++) //记录一个小朋友的左边有几个比他高的
{
cin>>high[i];
add(high[i]+1,1);//因为身高可能为0,所以给每个小朋友的身高都+1
move[i]+=(i+1)-get(high[i]+1);
}
memset(tree,0,sizeof(tree));
for(int i=n-1;i>=0;i--) //记录一个小朋友的右边有几个比他低的
{
add(high[i]+1,1);
move[i]+=get(high[i]);
}
for(int i=0;i<n;i++)
{
ans+=((1+move[i])*move[i]/2);
}
cout<<ans<<endl;
}