3813:【第七章数组】洗牌问题 分数: 3

题目描述

给你2N张牌,编号为1,2,3..n,n+1,..2n。这也是最初的牌的顺序。 一次洗牌是把序列变为n+1,1,n+2,2,n+3,3,n+4,4..2n,n。可以证明,对于任意自然数N,都可以在经过M次洗牌后第一次重新得到 初始的顺序。编程对于小于10000的自然数N,求出M的值。

输入格式

一个自然数N

输出

洗牌次数M

样例输入

20

样例输出

20

program p3813;
var
 a,b:array[1..20000]of longint;
 i,s,n:longint;
 jg:boolean;

begin
 readln(n);
 s:=0;
 for i:= 1 to 2*n do
  begin
   a[i]:=i;
   b[i]:=i;
  end;
 repeat
  for i:= 1 to n do
  begin
   b[2*i]:=a[i];
   b[2*i-1]:=a[n+i];
  end;
   for i:= 1 to 2*n do   a[i]:=b[i];
   s:=s+1;

   if a[1]=1 then jg:=true else jg:=false;
  until jg;
  writeln(s);
  end.
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/jing1223639316/article/details/46826547
个人分类: 编程
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

3813:【第七章数组】洗牌问题 分数: 3

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭