python
文章平均质量分 86
jingjishisi
这个作者很懒,什么都没留下…
展开
-
Support Vector Machine(SVM) sklearn实现
SVM算法原理问题描述线性支持向量机硬间隔最大化方法软间隔最大化方法对偶算法非线性支持向量机支持向量机名字的由来SVM算法sklearn实现二元分类核函数的选择多元分类训练模型的保存与调用参考文献SVM算法原理SVM是一种有监督的机器学习算法,解决的是二元分类问题,即分两类的问题,多元分类问题可以通过构造多个SVM分类器的方法来解决。...原创 2018-02-24 15:16:57 · 3021 阅读 · 0 评论 -
朴素贝叶斯 sklearn
基本原理问题描述问题分析算法步骤平滑因子sklearn实现参考文献基本原理朴素贝叶斯方法是基于样本的所有特征相互独立这一假设的,这使得模型的建立过程变得简单,但也牺牲了一定的分类准确性。问题描述给定一组训练样本集T={(x1,y1),(x2,y2),⋯,(xN,yN)}T={(x1,y1),(x2,y2),⋯,(xN,yN)}T=\{(x_1...原创 2018-03-07 14:02:17 · 451 阅读 · 0 评论 -
ID3 C4.5 CART决策树原理及sklearn实现
问题描述ID3信息增益决策树构建剪枝C4.5信息增益比决策树构建剪枝CART基尼指数决策树构建剪枝sklearn之决策树算法的实现参考文献问题描述假设我们有一组训练数据D={(x1,y1),⋯,(xN,yN)}D={(x1,y1),⋯,(xN,yN)}D=\{(x_1,y_1),\cdots,(x_N,y_N)\},这组训练数据代...原创 2018-02-28 16:22:12 · 15681 阅读 · 2 评论 -
pymc 包的应用
应用场合结合例子说明pymc包的用法问题描述矿难模型参数求解官方教程应用场合官方教程中给出了一个例子来说明pymc的应用。英国每年发生矿难的次数可以近似看作服从泊松分布的随机变量,随着采矿技术的进步,该泊松分布的参数会发生变化,pymc包可以帮助我们确定矿难发生次数服从的泊松分布的参数改变的年份,以及变化前后的泊松分布参数,从而建立矿难模型,对今后矿难发生的次数...原创 2018-02-23 18:10:44 · 4127 阅读 · 0 评论 -
Metropolis 采样算法
前言马尔科夫链概念描述转移概率矩阵平稳分布为何要用马尔科夫链Metropolis 采样算法简介Metropolis 采样算法思路Metropolis 采样算法步骤Metropolis 采样算法实例后记参考文献前言Metropolis 采样算法解决的问题是:从一个复杂的目标分布获取近似的样本。马尔科夫链概念描述XXX是一...原创 2018-02-11 11:17:07 · 22824 阅读 · 6 评论 -
numpy 包用法简单总结
在文件头部引用numpy包创建numpy数组创建一维数组创建多维数组利用arange zeros ones empty创建数组numpy数组的基本操作数据类型数组的转置数组的运算数组索引与切片基本方法切片布尔索引其他索引方式生成数组的副本官方教程在文件头部引用numpy包为了方便引用一般将numpy引用为np:import...原创 2018-02-08 11:54:18 · 416 阅读 · 0 评论 -
python 中 json 包用法简单总结
JSON包的引用python对象与JSON对象的互相转换存取JSON文件python官方帮助文档JSON包的引用在文件头部引用json包import jsonpython对象与JSON对象的互相转换json对象的类型为’str’:dic = {'b':'I', 'a':123, 'c':'100'}j1 = json.dumps(d...原创 2018-02-08 11:53:11 · 15339 阅读 · 0 评论