Metropolis 采样算法

本文介绍了Metropolis 采样算法,这是一种利用马尔科夫链从复杂目标分布中获取样本的方法。首先解释了马尔科夫链的概念、转移概率矩阵和平稳分布,接着详细阐述了Metropolis 采样算法的思路、步骤和实例,展示如何通过该算法对t分布进行采样。文章还探讨了为什么选择对称分布作为基础,并提供了参考文献以深入理解MCMC算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

Metropolis 采样算法解决的问题是:从一个复杂的目标分布获取近似的样本。


马尔科夫链

概念描述

X X 是一个随机变量,其可能的取值来自于集合 Ω = { s 0 , s 1 , s 2 , , s k 1 , s k } X X 在离散时刻 t的取值为 X t 。若 X X 随时间变化的转移概率仅仅依赖于其当前时刻的取值 X t ,即

P(Xt+1|[X0,X1,,Xt])=P(Xt+1|Xt) P ( X t + 1 | [ X 0 , X 1 , ⋯ , X t ] ) = P ( X t + 1 | X t )

那么随机变量 X X 随时间变化的过程是一个马尔科夫过程, X 在[0,t]时间内随时间变化生成的序列 (X0,X1,,Xt) ( X 0 , X 1 , ⋯ , X t ) 就是一个马尔科夫链。

转移概率矩阵

设随机变量 X X 在任意时刻t+1的取值为 s i 的概率为 πt+1i π i t + 1 ,即 πt+1i=P(Xt+1=si) π i t + 1 = P ( X t + 1 = s i ) ,其中t为一个任意时刻。随机变量从状态 sj s j 转移到状态 si s i 的转移概率为 Pji P j i

Pji=P(Xt+1=si|Xt=sj) P j i = P ( X t + 1 = s i | X t = s j )

t 为任意时刻,那么我们可以得到 πt+1i π i t + 1 的计算公式如下:
πt+1i=j=0kP(Xt+1=si|Xt=sj)P(Xt=sj) π i t + 1 = ∑ j = 0 k P ( X t + 1 = s i | X t = s j ) ∗ P ( X t = s j )

我们注意到在上式中 P(Xt+1=si|Xt=sj)=Pji P ( X t + 1 = s i | X t = s j ) = P j i P(Xt=sj)=πtj P ( X t = s j ) =
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值