51Nod-算法马拉松23-B-谷歌的恐龙(数学期望)

题目链接:51Nod-算法马拉松23-B-谷歌的恐龙

E(i) 为第 i 次取数字游戏结束的期望。设 b 数组存放不在 a 中的数字,容易知道:

S=mi=1ai T=nmi=1bi k=nm

E(1)=1nmi=1ai=1nS

E(2)=1n1nmi=1kj=1(ai+bj)=1n2(kS+mT)

E(3)=1n1n1nmi=1kj=1kp=1(ai+bj+bp)=1n3(k2S+2mkT)

......

E(i)=1ni(ki1S+(i1)mki1T)

第一项直接等比数列搞,第二项是一个级数,先积分再求导即可

ans=i=1E(i)=Sm+mTn22nk+k2=S+Tm=n(n1)2m

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    printf("%.6f\n",n*1.0*(n-1)/2/m);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值