Codeforces Round #567 (Div. 2)

Codeforces Round #567 (Div. 2)

D:
题意是在树中确定一个根,使得相同深度的点度数相同。
稍微画一下可以知道,根要么在直径上,要么在直径终点延伸出的一条链的端点上。
因此只需要处理直径的两个端点、直径的中点、直径延伸出的最短的链的端点这几个点就行。如果这几个点都不满足要求,则输出-1。

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+7;
int deg[N], sz[N];
int rt;
vector<int> adj[N], pth;
int dl, dr, dd;
int dfsd(int u, int p, int &endp) {
    int mx1=0, mx2=0;
    int mxp1, mxp2;
    for(int v : adj[u]) {
        if(v==p) continue;
        int pt;
        int d = dfsd(v, u, pt)+1;
        if(d>mx1) mx2=mx1, mxp2=mxp1, mx1=d, mxp1=pt;
        else if(d>mx2) mx2=d, mxp2=pt;
    }
    if(mx1+mx2>dd) {
        if(mx2) dl=mxp1, dr=mxp2;
        else dl=mxp1, dr=u;
        dd = mx1+mx2;
    }
    endp=mx1?mxp1:u;
    return mx1;
}
bool dfs(int u, int p, int d) {
    if(deg[d]==-1) deg[d] = adj[u].size();
    else if(deg[d]!=adj[u].size()) return false;
    for(int v : adj[u]) {
        if(v==p) continue;
        bool ok = dfs(v, u, d+1);
        if(!ok) return false;
    }
    return true;
}
bool find_path(int u, int p, int e) {
    if(u==e) {
        pth.push_back(u);
        return true;
    }
    for(int v : adj[u]) {
        if(v==p) continue;
        if(find_path(v, u, e)) {
            pth.push_back(u);
            return true;
        }
    }
    return false;
}
int find_top(int u, int p, int d, int mxd) {
    if(d>mxd) return -1;
    if(adj[u].size()==1) return u;
    if(p!=0&&adj[u].size()>=3) return -1;
    for(int v : adj[u]) {
        if(v==p) continue;
        int res = find_top(v, u, d+1, mxd);
        if(res!=-1) return res;
    }
    return -1;
}
int main() {
    int n;
    scanf("%d", &n);
    for(int i=1; i<n; ++i) {
        int u, v;
        scanf("%d%d", &u, &v);
        adj[u].push_back(v);
        adj[v].push_back(u);
    }
    dl=1;dr=1;dd=0;
    int tmp;
    dfsd(1, 0, tmp);
//    printf("%d %d %d\n", dl, dr, dd);
    memset(deg, -1, sizeof(deg));
    if(dfs(dl, 0, 0)) printf("%d\n", dl), exit(0);
    memset(deg, -1, sizeof(deg));
    if(dfs(dr, 0, 0)) printf("%d\n", dr), exit(0);
    find_path(dl, 0, dr);
    if(pth.size()%2==0) puts("-1"), exit(0);
    int p = pth[pth.size()/2];
    memset(deg, -1, sizeof(deg));
//    printf("%d\n", p);
    if(dfs(p, 0, 0)) printf("%d\n", p), exit(0);
//    cout << p << endl;
    int t = find_top(p, 0, 0, pth.size()/2-1);
//    cout <<t << endl;
    memset(deg, -1, sizeof(deg));
    if(t!=-1&&dfs(t, 0, 0)) printf("%d\n", t), exit(0);
    puts("-1");
    return 0;
}

E:
虽然式子是连乘的,但是它们的指数是求和,因此将其指数用快速幂求出来即可。

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const ll mod = 1e9+7;
const ll p = 1e9+6;
struct Matrix {
    ll mat[5][5];
    int B;
    Matrix(int _B) : B(_B) { memset(mat, 0, sizeof(mat)); }
    ll* operator[] (int index) {
        return mat[index];
    }
    Matrix operator * (Matrix a) {
        Matrix c(B);
        for(int i=0; i<B; ++i) {
            for(int j=0; j<B; ++j) {
                for(int k=0; k<B; ++k) {
                    c[i][j]=(c[i][j]+mat[i][k]*a[k][j]%p)%p;
                }
            }
        }
        return c;
    }
};
Matrix powm(Matrix a, ll b) {
    Matrix c(a.B);
    for(int i=0; i<c.B; ++i) {
        c[i][i]=1;
    }
    while(b) {
        if(b&1) c=c*a;
        a=a*a;
        b>>=1;
    }
    return c;
}
ll powb(ll a, ll b ) {
    ll c = 1;
    while(b) {
        if(b&1) c=c*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return c;
}
int main() {
    ll n, f1, f2, f3, c;
    cin >> n >> f1 >> f2 >> f3 >> c;
    Matrix m(3);
    m[0][0]=m[0][1]=m[0][2]=m[1][0]=m[2][1]=1;
    m = powm(m, n-3);
    ll fon = m[0][2];
    ll ftw = m[0][1];
    ll fth = m[0][0];
    m = Matrix(5);
    m[0][0]=m[0][1]=m[0][2]=m[0][3]=m[0][4]=1;
    m[1][0]=m[2][1]=m[3][3]=m[3][4]=m[4][4]=1;
    m = powm(m, n-3);
    ll cf = m[0][4]*2;
//    printf("%I64d %I64d %I64d %I64d\n", fon, ftw, fth, cf);
    ll res = powb(f1, fon);
    res = res * powb(f2, ftw)%mod;
    res = res * powb(f3, fth)%mod;
    res = res * powb(c, cf)%mod;
    printf("%I64d\n", res);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值