boosting系列算法

本文详细介绍了boosting算法家族,包括Adaboost的基本思想、推导和算法描述,提升树的原理,GBDT的损失函数与算法特点,以及XGBoost的优化策略和速度优势。此外,还探讨了GBDT与随机森林的区别。
摘要由CSDN通过智能技术生成

boosting是一种集成学习算法,由一系列基本分类器按照不同的权重组合成为一个强分类器,这些基本分类器之间有依赖关系。包括Adaboost算法、提升树、GBDT算法。

一、Adaboost算法

1、基本思想
通过两个问题:
1)如何更新样本权重D? 提高被弱分类器错分样本的权值,降低正分样本的权值,作为下一轮基本分类器的训练样本。
2)如何将弱分类器组合成强分类器? 加权多数表决,误差率小的分类器的权值大,使其在表决过程中起较大作用。
AdaBoost是个二分类算法。
2、推导
Adaboost的基本分类器的损失函数为指数函数,推导过程就是围绕最小化损失函数展开的。主要目的是推导出样本权值的更新公式、基本分类器的权值计算公式。
在这里插入图片描述
3、算法描述
在这里插入图片描述

二、提升树算法

1、基本思想
当Adaboost算法中的基本分类器是cart回归树时,就是提升树,同时,损失函数变为平方误差损失函数。在Adaboost算法中通过改变样本的权重来进行每一轮的基本分类器的学习,在提升树算法中,是通过上一轮学习的残差进行本轮的学习。

2、推导
和Adaboost算法一样,也是求最小化损失函数下第m颗树模型的参数 θ m \theta_m θm
在这里插入图片描述
f m ( x ) f_m(x) fm(x)是第m轮迭代的提升树模型, T ( x ; θ m ) T(x;\theta_m) T(x;θ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值