pytorch系列8 --self.modules() 和 self.children()的区别

本文主要讲述:

  1. self.modue和self.children的区别与联系

说实话,我真的只想讲参数初始化方式,但总感觉在偏离的道路上越走越远。。。
在看一些pytorch文章讲述自定义参数初始化方式时,使用到了self.modules()self.children()函数,觉得还是需要讲解一下的。

不如直接看一下代码:

import torch
from torch import nn

# hyper parameters
in_dim=1
n_hidden_1=1
n_hidden_2=1
out_dim=1

class Net(nn.Module):
    def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
        super().__init__()

        self.layer = nn.Sequential(
            nn.Linear(in_dim, n_hidden_1), 
            nn.ReLU(True)
             )
        self.layer2 = nn.Sequential(
                nn.Linear(n_hidden_1, n_hidden_2),
                nn.ReLU(True),
            )
        self.layer3 = nn.Linear(n_hidden_2, out_dim)
        # print(self.modules())
        print("children")
        
        for i, module in enumerate( self.children()):
            print(i, module)
        print("modules")
        for i, module in enumerate( self.modules()):
            print(i, module)

    
    def forward(self, x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        return x
      
        
model = Net(in_dim, n_hidden_1, n_hidden_2, out_dim)

网络结构解读:

这是一个三层的网络结构,将第一层的线性层和激活层放在一个nn.Sequential层中,将第二层的线性层和激活函数放在第二个nn.Sequential中,最后一个线性层作为单独第三层。
整个网络结构如下图所示:

接下来看一下代码__init__的print函数的打印信息:

  • self.children()
    out:
    children
    0 Sequential(
    (0): Linear(in_features=1, out_features=1, bias=True)
    (1): ReLU(inplace)
    )
    1 Sequential(
    (0): Linear(in_features=1, out_features=1, bias=True)
    (1): ReLU(inplace)
    )
    2 Linear(in_features=1, out_features=1, bias=True)

    可以看出,self.children()存储网络结构的子层模块,也就是net's children那一层。

  • self.modules()

输出:
modules
第一层:
0 Net(
(layer): Sequential(
(0): Linear(in_features=1, out_features=1, bias=True)
(1): ReLU(inplace)
)
(layer2): Sequential(
(0): Linear(in_features=1, out_features=1, bias=True)
(1): ReLU(inplace)
)
(layer3): Linear(in_features=1, out_features=1, bias=True)
)

第二层:
1 Sequential(
(0): Linear(in_features=1, out_features=1, bias=True)
(1): ReLU(inplace)
)
2 Linear(in_features=1, out_features=1, bias=True)
3 ReLU(inplace)

第三层:
4 Sequential(
(0): Linear(in_features=1, out_features=1, bias=True)
(1): ReLU(inplace)
)
5 Linear(in_features=1, out_features=1, bias=True)
6 ReLU(inplace)

第四层:
7 Linear(in_features=1, out_features=1, bias=True)

可以看出,self.modules()采用深度优先遍历的方式,存储了net的所有模块,包括net itself,net's childrenchildren of net's children

conclusion:
self.children()只包括网络模块的第一代儿子模块,而self.modules()包含网络模块的自己本身和所有后代模块。

转载自:https://blog.csdn.net/dss_dssssd/article/details/83958518

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值