ML语言/函数式编程原理(二)

四、排序

一、整数的比较

compare: int *int ->order

定义新的数据类型order

datatype order=LESS|EQUAL|GREATER;
fun compare(x:int,y:int):order=
		if x<y then LESS else
		if y<x then GREATER else EQUAL;

二、排序结果判断sorted

sorted : int list->bool (判断升序)

fun sorted [] =true
	|	sorted [x] =true
	| sorted (x::y::L)=
		(compare(x,y)<>GREATER andalso sorted(y::L));

其中compare(x,y)<>GREATER表示不等于GREATER,即小于等于

三、插入排序

1.整数的插入ins

ins : int*int list -> int list (有序list中插入一个int)

fun ins (x,[])=[x]
	| ins(x,y::L)=case compare(x,y) of
								GREATER=>y::ins(x,L)
								| _ =>x::y::L;
2.插入排序

isort : int list ->int list (无序list得到有序list)

fun isort [] =[]
| isort (x::L)=ins(x,isort L);
3.另一个插入排序isort’

isort’ : int list -> int list (无序list得到有序list)

fun isort' [] = []
| isort' [x]=[x]
| isort' (x::L)=ins(x,isort' L);

四、归并排序

1.表的分割split

split : int list ->int list * int list

fun split [] =([],[])
	| split [x] = ([x],[])
	| split (x::y::L)=
			let val (A,B)=split L
			in (x::A,y::B)
			end
2.表的合并merge

merge : int list * int list ->int list (两个有序表合并成一个有序表)

fun merge(A,[])=A
 |  merge([],B)=B
 |  merge(x::A,y::B)=case compare(x,y) of
 													LESS => x::merge(A,y::B)
 													|EQUAL => x::y::merge(A,B)
 													|GREATER => y::merge(s::A,B);
3.mergesort

Most : int list -> int list (无序表到有序表)

fun msort []=[]
	| msort [x]=[x]
	| msort L=let
							val (A,B)=split L
						in
							merge(msort A,msort B)
						end
fun msort []=[]
	| msort [x]=[x]
	| msort L=let
						 	val (A,B)=split L
						 	val A'=msort A
						 	val B'=msort B
						in	 merge(A',B')
						end

五、新的类型-tree

通过tree的相关训练,真的可以更加深刻的理解递归

定义新的类型tree

datatype tree =Empty | Node of tree*int*tree;

Node(t1,x,t2) t1,t2都是tree,x是int

1.树的大小
fun size Empty=0
	| size(Node(t1,_,t2))=size t1 +size t2 +1;
2.树的深度
fun max(x,y):int=if x>y then x else y;
fun depth Empty = 0
	|	depth(Node(t1,_,t2))=max(depth t1,depth t2)+1;
3.树的遍历

中序遍历:先左子树、再根节点、最后右子树

fun trav Empty = []
	| trav(Node(t1,x,t2))=trav t1 @ (x::trav t2);
4.树的拆分

split:int list -> int list* int list

fun split [] =([],[])
	| split [x]=([x],[])
	|	split (x::y::L)=
			let val (A,B)=split L
			in (x::A,y::B)
			end

SplitAt : int*tree->tree*tree 对一个有序树进行拆分

应用递归的想法 SplitAt得到的是两个有序数

fun SplitAt(y,Empty)=(Empty,Empty)
	| SplitAt(y,Node(t1,x,t2))=
			case compare(x,y) of
				GREATER => let
										val(l1,r1)=SplitAt(y,t1)
									 in (l1,Node(r1,x,t2))
									 end
			 	| _			=> let
			 							val (l2,r2)=SplitAt(y,t2)
			 						 in (Node(t1,x,l2),r2)
			 						 end
5.数的合并

Merge : tree*tree -> tree 对两个有序树合并

应用递归的想法,Merge能将两个有序树合并成一个有序树

fun Merge(Empty,t2)=t2
	| Merge(Node(l1,x,r1),t2)=let
															val(l2,r2)=SplitAt(x,t2)
														in
															Node(Merge(l1,l2),x,Merge(r1,r2))
6.树的归并排序

Msort : tree -> tree 用一个无序树得到有序树

fun Msort Empty=Empty
	| Msort (Node(t1,x,t2))=
			Ins(x,Merge(Mosrt t1,Msort t2))

六、程序的并行执行

fun Merge(Empty,t2)=t2
	| Merge(Node(l1,x,r1),t2)=let val(l2,r2)=Split(x,t2)
														in Node(Merge(l1,l2),x,Merge(r1,r2))
														end

Merge(Mosrt t1,Mosrt t2)

Merge串行执行的时间开销为分别对t1,t2执行Msort的开销之和+c

Merge并行执行的时间开销为分别对t1和t2执行的Msort开销的最大值+c

用“span”表示程序在足够多的并行处理器上的时间开销

1.Ins函数的span

Ins : int*tree-> tree

fun Ins(x,Empty)=Node(Empty,x,Epmty)
	|	Ins(x,Node(t1,y,t2))=
			case compare(x,y) of
				GREATER => Node(t1,y,Ins(x,t2))
			| 		_ 	=> Node(Ins(x,t1),y,t2)

平衡二叉树:一棵空树或者它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

Sins(d) is O(d)

2.SplitAt函数的span

SplitAt : int*tree -> tree*tree

fun SplitAt(y,Empty)=(Empty,Empty)
	| SplitAt(y,Node(t1,x,t2))=
			case compare(x,y) of
				GREATER => let
										  val(l1,r1)=SplitAt(y,t1)
										in (l1,Node(r1,x,t2))
										end
			 | 		_ 	=> let 
			 								val(l2,r2)=SplitAt(y,t2)
			 							in (Node(t1,x,l2),r2)
			 							end

SSplitAt(d) is O(d)

3.Merge函数的span

Merge : tree * tree -> tree

fun Merge (Empty, t2) = t2
	| Merge (Node(l1,x,r1), t2) = let
																	val (l2, r2) = SplitAt(x, t2)
																in
																	Node(Merge(l1, l2), x, Merge(r1, r2))
																end

SMerge(d) is O(d2)

4.Msort函数的span

Msort : tree -> tree

fun Msort Empty = Empty
	| Msort (Node(t1,x,t2)) =
					Ins(x, Merge(Msort t1, Msort t2))
fun Msort Empty = Empty
	| Msort (Node(t1, x, t2)) =
					Rebalance(Ins (x, Merge(Msort t1, Msort t2)))

SMsort(d) is O(d3)

七、多态类型

fun split [] = ([], [])
	| split [x] = ([x], [])
	| split (x::y::L) =
					let val (A,B) = split L in (x::A, y::B) end

多态的好处:

  1. 避免写较多多余的代码

  2. 便于维护

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值